• Title/Summary/Keyword: Flight Height

Search Result 132, Processing Time 0.022 seconds

Performance Improvement Package Application Effect Analysis - Focused on Airbus 350 Case - (성능향상 패키지 적용 효과 분석 - Airbus 350 기종을 중심으로 -)

  • Jang, Sungwoo;Cho, Yul Hyun;Yoo, Jae Leame;Yoo, Kwang Eui
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.44-51
    • /
    • 2021
  • PIP is an abbreviation of 'Performance Improvement Package', which is a package that can improve performance by applying some design changes to existing aircraft. Boeing provides PIP applicable to B777-200, and Airbus provides PIP applicable to A350-900 as standard. PIP provided by Boeing and Airbus is a separate task, but it is expected to reduce fuel consumption by reducing drag through aerodynamic improvements. The PIP applied to the A350-900 includes work such as increasing Winglet Height and re-twisting Outboard Wing. This study is to verify the effect of PIP application of the A350-900 aircraft and use it as basic data for economic analysis. The aerodynamic improvement studies and expected effects of the PIP application were examined, and the actual flight data of the PIP-applied and the non-applied aircraft were compared to confirm the PIP application effect. This paper provides empirical results for the aviation industry on the PIP application efficiency as a method of improving fuel efficiency and reducing carbon emission.

Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques (드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Rhim, Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.545-557
    • /
    • 2017
  • The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.

Kinematical Analysis of Lopez Motion in Horse Vault: Comparison between Successful and Failed Trials (도마 Lopez 동작의 운동학적 분석: YHS 선수의 성공과 실패 사례 비교)

  • Park, Cheol-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.167-174
    • /
    • 2020
  • The purpose of this study was to investigate the kinematic comparison between successful and failed trials of Lopez vault techniques in male gymnastics. The subject, an Olympic gold medalist, was YHS (age: 27 years, height: 1.6 m, and mass: 53 kg) and fourteen high speed motion capturing cameras were used for data collection. The 26 reflective sensors were attached on major anatomical positions and 15 segment-body model was used to calculate the kinematic variables. According to results, the contact duration of the spring-board for successful trial(ST) was longer and that of failed trial(FT) and the range of motion of knee joint for ST was greater than that of FT. The movement times during pre-flight between ST and FT were same, but the movement time of horse contact period for ST was shorter than that of FT. The ST showed a longer movement time during post-flight and the longer horizontal distance than those of FT. Conclusively, YHS needs to approach the horse with a higher position of the body and higher incidence angle, as well as make faster twist angular velocity in an attempt to achieve ST.

A Study for Preventing Secondary Incident Caused by Incoincidence of Individual Flights PID values or Sensor or Telecommunication Defects During Formation Flying (쿼드콥터 편대비행 중 PID값 불일치 및 센서, 모듈 고장진단을 통해 2차사고 발생 방지를 위한 연구)

  • Kim, Hyo-jin;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.487-489
    • /
    • 2016
  • In this paper, quad copter provides a method for preventing the possibility of accident in the air during a formation flight. The existing studies had a few studies upon the falls because quad copter formation flight was generally implemented indoors. Therefore, in this paper, we provide a self-diagnosis system to prevent a secondary accident for mismatching the Proportional-Integral-Derivative(PID) and detecting an abnormal communication modules each others in formation flying system. Scheme to be proposed, a system is that when one of the node meets a problem, the header node is sending the information of the current state to the server in the first and making a diagnosis itself in order to avoid the problems caused by dropping from the air. Therefore, if the difference between PID value of header node and slave node is greater than specified values or if it detects a defective sensors and communication modules, the proposed system is set to provide for moving toward a safe place. As a result, we expect that this proposed system is possible to minimize additional incidents by self adjusting the height through a self-diagnosis discovering flawed the acceleration sensor, gyro sensor and various attached sensors.

  • PDF

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

Single Engine Failure during Approach and Transition Analyses of VTOL Aircraft (수직이착륙기의 착륙접근시 단일엔진고장 및 비행전이 영역 해석)

  • Yoon, Sang-Joon;Ahn, Byung-Ho;Choi, Dong-Hoon;Mavris, Dimitri
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.50-56
    • /
    • 2005
  • The objective of this study is to find the optimal thrust condition and wing loading of a vertical take-off and landing (VTOL) fixed-wing aircraft through a single engine failure analysis during landing approach and an analysis of transition flight. The aircraft analysis modules used in the study are based on the aircraft synthesis program. To achieve the computing infrastructure for aircraft design and analysis, the EMDIOS was employed as a design framework, which is a semi-completed application program and ready to customize. Simulation results reveal the most critical height at the event of single engine failure is approximately 40 ft. And, in order to avoid a significant loss in altitude during the transition, the thrust to weight ratio must be kept high, while both the engine tilt speed and the wing loading must be kept low, as confirmed by the analysis results.

Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake (회전익기 공기흡입구 주위 방빙장치 성능 해석)

  • Ahn, Gook-Bin;Jung, Ki-Young;Jung, Sung-Ki;Shin, Hun-Bum;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • Ice accretions on the surface around a rotorcraft air intake can deteriorate the safety of rotorcraft due to the engine performance degradation. The computational simulation based on modern CFD methods can be considered extremely valuable in analyzing icing effects before exact but very expensive icing wind tunnel or in-flight tests are conducted. In this study the range and amount of ice on the surface of anti-icing equipment are investigated for heat-on and heat-off modes. It is demonstrated through the computational prediction and the icing wind tunnel test that the maximum mass and height of ice of heat-on mode are reduced about 80% in comparison with those of heat-off mode.

Kinematical Analysis of Ropez Motion in Horse Vault (도마 Ropez동작의 운동학적 분석)

  • Back, Jin-Ho;Lee, Soon-Ho;Choi, Kyu-Jung;Moon, Young-Jin;Kim, Dong-Min;Park, Jong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • The purpose of this research helps to make full use for perfect performance by grasping the defects of Ropez motion performed by athlete CSM who was under the training for the 28th 2004 Athene Olympic Garnes, and by presenting complementary methods. For the better Ropez motion which had been performed by CSM for the 1st dispatch selection test and the final for the 28th Athene Olympic Game was analyzed with 3-dimensional cinematographic method. Here are the conclusions: 1. During the board contact phase, powerful kicking and rapid forward flexion motion of upper body make increasing vertical velocity of C. O. G and enlarging body angle. 2. It was indicated that rapid forward flexion motion of upper body during the board contact phase get a large body angle in horse take-off. 3. rapid forward flexion motion of upper body during the board contact phase makes a longer time at horse contacting phase. It showed that this result increased velocity of horse take-off causing by powerful blocking motion. 4. Increasing of air-borne height during pre- flight phase, makes a higher C. O. G; and larger angle of hip, angle of knee and body angle in the landing phase. And it revealed that these results have a stable landing.

Kinematic Analysis According to the Intentional Curve Ball at Golf Driver Swing (골프 드라이버 스윙 시 의도적인 구질 변화에 따른 운동학적 분석)

  • Hong, Soo-Young;So, Jae-Moo;Kim, Yong-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • The purpose of This study's aim is to examine the difference in the changes of body segment movement, variables for ball quality, and carry at golf driver swing according to the ball quality using comparative analysis. Regarding the impact variables according to the ball quality using the track man and carry, club speed was the fastest at draw shot, ball speed was the fastest at straight shot, and smash factor was the lowest at draw shot. About the vertical launch angle, the fade shot showed the highest launch angle while the max height of the ground and ball was the highest at fade shot. And carry was the longest at draw shot. For the flight time, it was the longest at draw shot. The landing angle was the largest at fade shot. About the club head position change and trajectory, at the overall event point, the fade shot drew a more outer trajectory at the point of the follow through(E6) than the straight or draw shot. Regarding the angular speed of shoulder rotation, at the overall event point, the fade shot showed the greatest angular speed change in the follow through(E6). Also, about the angular speed of pelvic rotation, at the overall event point, the draw shot showed the greatest angular speed change at the point of down swing(E4). Concerning the stance angle change, both straight and fade shots were open as the concept of open stance whereas the draw shot was close as that of close stance. Regarding the previous study, the most important factor of deciding Ball Quality is the club face angle's open and close state at Impact. In short, the Ball Quality and carry were decided by this factor.

Change of Impact by the Early Extension in during a Golf Driver Swing (골프 드라이버 스윙 시 Early Extension에 따른 임팩트 변화)

  • So, Jae-Moo;Kim, Yong-Seok;Kim, Jae-Jung;Yoo, Kwang-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • The purpose of this study is to validate that change of impact by the Early Extension in during a golf driver swing. 13 golf players who were diagnosed with symptoms of Early Extension participated in a proactive corrective training programs that took place 3 times a week for a 4 month period. Data was collected by recording 5 pre and 5 post training driver swings and analyzing the data to calculate the change in velocity and its effect in the shot used the TRACK MAN. After the training, the changes of early extension were -0.21 cm in backswing section E2(take away), -0.64 cm in E3(halfway backswing), and -0.94 cm in E4(backswing top). The downswing section changes were -1.34 cm in event E5(halfway downswing), -1.74 cm in E6(impact). Impact force increased and thus club speed increased by 6.32 km/h, ball speed increased by 10.94 km/h, max height decreased by -6.22 m, carry increased by 10.85 m, carry side(left deviation) decreased by 4.84 m, flight time by increased by 0.4 sec, and total length increased by 17.96 m while landing angle decreased by -7.74 deg.