• Title/Summary/Keyword: Flight Controller

Search Result 289, Processing Time 0.024 seconds

Making for Circular Motion Table for Controller Design of Movement of Object (운동 물체의 제어기 설계를 위한 3축 가변 원판형 모션테이블 제작)

  • You, Jeong-Bong;Wang, Hyun-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.905-910
    • /
    • 2008
  • In this paper, a circular motion table which is able to simulate movement of object is designed and the experiment of control system using circular motion table is presented. Circular motion table is consisted of three axes changed on length and of ball splines which keep vertical centre axis of circular plate. Variable length of three axes make circular plate incline as vertical centre axis is kept on vertical center axis of circular motion table. It is designed that control system drives three servo motor, that is, make change length of axis simultaneously or independently. And this paper presents example of flight simulation using circular motion table. it will contribute toward nurture expert manpower of aerospace/robotics to popularize circular motion table and make an experiment using it.

A Study on Helicopter Trajectory Tracking Control using Neural Networks (신경회로망을 이용한 헬리콥터 궤적추종제어 연구)

  • Kim, Yeong Il;Lee, Sang Cheol;Kim, Byeong Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2003
  • In the paper, the design and evaluation of a helicopter trajectory tracking controller are presented. The control algorithm is implemented using the feedback linearization technique and the two time-scale separation architecture. In addition, and on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge of helicopter dynamic is applied to augment the attitude control system. Trajectory tracking performance of the control system in evaluated using modified TMAN simulation program representing as Apache helicopter. It is show that the on-line neural network in an adaptive control architecture is very effective in dealing with the performance depreciation problem of the trajectory tracking control caused by insufficient information of dynamics.

Missile Autopilot Design for Agile Turn Control During Boost-Phase

  • Ryu, Sun-Mee;Won, Dae-Yeon;Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.365-370
    • /
    • 2011
  • This paper presents the air-to-air missile autopilot design for a $180^{\circ}$ heading reversal maneuver during boost-phase. The missile's dynamics are linearized at a set of operating points for which angle of attack controllers are designed to cover an extended flight envelope. Then, angle of attack controllers are designed for this set of points, utilizing a pole-placement approach. The controllers' gains in the proposed configuration are computed from aerodynamic coefficients and design parameters in order to satisfy designer-chosen criteria. These design parameters are the closed-loop frequency, damping ratio, and time constant; these represent the characteristics of the control system. To cope with highly nonlinear and rapidly time varying dynamics during boost-phase, the global gain-scheduled controller is obtained by interpolating the controllers' gains over variations of the angle of attack, Mach number, and center of gravity. Simulation results show that the proposed autopilot design provides satisfactory performance and possesses good [ed: or "sufficient" or "excellent"] capabilities.

Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase (초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구)

  • Kim, Seon Hong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.

Trajectory Based Air Traffic Analysis Software Design for Dynamic Airspace Configuration (동적 공역 형상관리를 위한 궤적기반 항공 교통량 분석 소프트웨어 설계)

  • Kim, Hyoun-Kyoung;Eun, Yeon-Ju;Oh, Eun-Mi
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.173-181
    • /
    • 2013
  • In this paper, the design result of the trajectory-based air traffic analysis software which is going to be used to assess air-traffic efficiency in case that some modification's made in dynamic airspace configuration, is described. The software has been developed to make statistical data about air-traffic in Incheon FIR based on the RPL, and to analyze the airway utilization and controller workload using the trajectory modeling data which are derived from the aircraft type, cruise speed, cruise altitude, and routes and fixes in the RPL. Since it batch-processes the long-term trajectory data with other inputs such as airspace, route information and so on, it has the advantage of quickly predicting the traffic variation when some change in airspace and route information is made.

Implementation of Multi-channel Communication System for Drone Swarms Control (군집 드론의 동시제어를 위한 멀티채널 송신 시스템 구현)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.179-185
    • /
    • 2017
  • Communication technologies hold a significant place in the swarm flight of drones for surveillance, inspection of disasters and calamities, entertainment performances, and drone collaborations. A GCS(ground control station) for the control of drone swarms needs its devoted communication method to control a large number of drones at the same time. General drone controllers control drones by connecting transmitters and drones in 1:1. When such an old communication method is employed to control many drones simultaneously, problems can emerge with the control of many transmitter modules connected to a GCS and frequency interference among them. This study implemented a transmitter controller to control many drones simultaneously with a communication chip of 2.4GHz ISM band and a Cortex M4-based board. It also designed a GCS to control many transmitter controllers via a network. The hierarchical method made it possible to control many more drones. In addition, the problem with frequency interference was resolved by implementing a time- and frequency-sharing method, controlling many drones simultaneously, and adding the frequency hopping feature. If PPM and S.BUS protocol features are added to it, it will be compatible with more diverse transmitters and drones.

State Estimation of Turbojet Engine Using Nonlinear Model (모델추정 기법을 이용한 터보제트엔진의 상태추정)

  • Kim, Jung-Hoe;Gim, Dong-Choon;Lee, Sang-Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.268-272
    • /
    • 2012
  • A propulsion controller for vehicles should be designed to overcome a sensor failure during a flight, and it is necessary to control the system properly at any circumstances. Therefore, the vehicles need to retain reliability on the sensor measurements by implementing extra sensors to replace the original control sensors in case of their failure. This paper presents the MIMO NARX model by simulation which substitutes measured values with estimated ones by the state estimation technique in case of a sensor failure in a turbojet engine. It is also presented that the NARX model can be adapted as an engine model in HILS equipments.

  • PDF

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System (스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석)

  • Ko, Hyosang;Yang, Jaehoon;Yoh, Jai ick;Choi, Hanlim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

A Research on Assessing and Improving EPTA (English Proficiency Test for Aviation) using Qualitative Research Method

  • Choi, Jin-Kook;Olivares, Cynthia Iris Arias
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • 항공교통관제사와 조종사 사이의 의사소통은 항공기 운항 안전에 있어서 매우 중요한 요소이다. 국제민간항공기구(ICAO)는 민간항공운송산업의 발전과 안전 도모를 위해 조종사 영어자격능력 시험을 의무사항으로 규정하고 있다. 왜냐하면 조종사의 우수한 의사소통능력은 비상상황 또는 비정상상황을 즉각적으로 대응할 수 있는 매우 필수적인 능력들 중 하나이기 때문이다. 대한민국 국토교통부는 2006년부터 ICAO EPTA 시험을 민간항공운송에서 조종사 의무자격시험으로 법적으로 규정하고 산하기관인 교통안전공단을 통해 시험을 주관하고 있다. 본 연구는 EPTA 시험에 응시하는 응시자의 시험에 대한 신뢰성을 증진시키고 시험제도의 발전방안을 모색하고자 하였다. 이를 위해 본 연구는 첫째, EPTA 시험제도와 관련한 이론적 배경을 고찰하였다. 둘째, EPTA 시험제도의 국내에서 정착 및 발전과정을 살펴보았다. 셋째, EPTA 시험제도의 신뢰성증진 및 발전방안 모색을 위해 총 15명의 항공전문가들을 대상으로 질적 연구를 수행하였다. 본론의 질적연구를 통해 연구자들은 국외 ICAO 공식 인증 EPTA 시험결과와 국내 교통안전공단이 주관하는 EPTA 시험결과를 바탕으로 교차응시에 따른 EPTA 등급을 비교·분석할 수 있었으며 시험응시자들에 대한 인터뷰를 통해 국내 EPTA 시험 발전을 위한 개선방안을 도출하였다.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.