DOI QR코드

DOI QR Code

스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System

  • Ko, Hyosang (Department of Aerospace Engineering, KAIST) ;
  • Yang, Jaehoon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai ick (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Choi, Hanlim (Department of Aerospace Engineering, KAIST)
  • 투고 : 2020.09.16
  • 심사 : 2021.01.20
  • 발행 : 2021.02.28

초록

공기 흡입식 극초음속 비행체인 스크램제트의 공력 데이터를 기반으로 하여 꼬리날개 각도와 발생추력을 제어 입력으로 가지는 PID 기반 제어기를 설계했다. 일정한 비행 동압을 가지는 상승궤적과 순항 이후 목표지점을 타격하는 궤적을 기준으로 입력하여 해당 궤적을 추종하는 비행 시뮬레이션을 수행했다. 시뮬레이션 결과에 대해서 초기 상승궤적과 순항 궤적에 대해 비행체 모델에 요구되는 추력을 계산하여 수소 연료 이중 모드 스크램제트 연소기에 요구되는 연료 유량 분석을 위한 연소해석을 진행했다. 본 연구의 연소해석은 독립적으로 개발된 흡입구, 연소기, 노즐, 외부 공력 모델을 통합한 모델에 대해 진행되어 공기 흡입식 극초음속 비행체 통합 설계에 대한 기반을 마련했다.

The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

키워드

과제정보

본 연구는 스크램제트 복합추진시스템 특화연구실 과제(과제코드: 16-106-501-035)의 지원을 받아 수행하였으며, 이에 감사드립니다.

참고문헌

  1. Murillo, O.J., "A fast ascent trajectory optimization method for hypersonic air-breathing vehicles," Ph.D. Dissertation, Department of Aerospace Engineering, Iowa State University, Ames, Iowa, United States, 2010.
  2. Groves, K.P., Sigthorsson, D.O., Serrani, A. and Yurkovich, S., "Reference command tracking for a linearized model of an air-breathing hypersonic vehicle," AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, U.S.A., AIAA 2005-6144, Aug. 2005.
  3. Lee, M.S. and Kim, H.G., "Development of unstructured hypersonic panel code for rapid aerodynamic analysis using local surface inclination method," 53th KSPE Autumn Conference, Busan, Korea, pp. 212-216, Nov. 2019.
  4. Lee, M.S., Lee, J.I., Kim, K.H. and Kim. H.J., "Unstructured Panel Code Development for Efficient Aerodynamic Analysis of Air-Breathing Hypersonic Vehicles," International Journal of Aeronautical and Space Sciences. (to be published)
  5. Lee, J.W. and Kang, S.H., "Design Improvement and Performance Evaluation of 2D Scramjet Inle," 54th KSPE Spring Conference, Korea, KSPE 2020-1061, Jul. 2020.
  6. Yang, J.H., Nam, J.H., Kang, S.H. and Yoh, J.I., "Numerical Investigation of Dual Mode Ramjet Combustor using Quasi 1-Dimensional Solver," Journal of The Korean Society for Aeronautical and Space Sciences. (to be published)
  7. Birzer, C. and Doolan, C.J., "Quasi-OneDimensional Model of Hydrogen Fueled Scramjet Combustors," Journal of Propulsion and Power, Vol. 25, No. 6, pp. 1220-1225, Nov. 2009. https://doi.org/10.2514/1.43716
  8. Torrez, S.M., Scholten, N.A., Micka, D.J., Driscoll, J.F., Bolender, M.A., Doman, D.B. and Oppenheimer, M.W., "A scramjet engine model including effects of precombustion shocks and dissociation," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit., Hartford, U.S.A., AIAA 2008-4619, Jul. 2008.
  9. Ikui. T., Matsuo, K. and Nagai, M., "The Mechanism of Pseudo-Shock Waves," Bulletin of JSME, Vol. 17, No. 108, pp. 731-739, Jun. 1974. https://doi.org/10.1299/jsme1958.17.731
  10. Driscoll, J.F., Torrez, S.M. and Driscoll, J.F., "Minimum-fuel ascent of a hypersonic vehicle using surrogate optimization," Journal of Aircraft, Vol. 51, No. 6, pp. 1973-1986, 2014. https://doi.org/10.2514/1.C032617