• Title/Summary/Keyword: Flexure load

Search Result 224, Processing Time 0.027 seconds

Design and Analysis of Two-Axis Stage Driven by Piezoelectric elements (피에조 구동형 2축 스테이지의 설계 및 해석)

  • 류성훈;한창수;최기봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.742-745
    • /
    • 2003
  • Piezoelectric elements driven ultra-precision stages have been used for high accuracy, fast response and high load rapacity. which are allowable to apply the stages to AFMs. Most of the piezoelectric driven stages are guided by flexure hinges for force transmission and mechanical amplification. However the flexure hinge mechanisms cause lack of position accuracy due to coupled and parasitic motions. Hence it is important that the mechanism design of the stage is focused on the stiffness of the flexure hinges to accomplish fast response and hish accuracy without the coupled and parasitic motions. In this study, some constraints for optimal design of a piezoelectric elements driven stage and a design method are proposed. Next, an optimal design is carried out using mathematical calculation. Finally the designed results are verified by FEM.

  • PDF

Effect of Transverse Steel on Shear Performance for RC Bridge Columns (철근콘크리트 원형 교각의 전단성능에 대한 횡방향철근의 영향)

  • Ko, Seong Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.191-199
    • /
    • 2021
  • In seismic design, hollow section concrete columns offer advantages by reducing the weight and seismic mass compared to concrete section RC bridge columns. However, the flexure-shear behavior and spirals strain of hollow section concrete columns are not well-understood. Octagonal RC bridge columns of a small-scale model were tested under cyclic lateral load with constant axial load. The volumetric ratio of the transverse spiral hoop of all specimens is 0.00206. The test results showed that the structural performance of the hollow specimen, such as the initial crack pattern, initial stiffness, and diagonal crack pattern, was comparable to that of the solid specimen. However, the lateral strength and ultimate displacement of the hollow specimen noticeably decreased after the drift ratio of 3%. The columns showed flexure-shear failure at the final stage. Analytical and experimental investigations are presented in this study to understand a correlation confinement steel ratio with neutral axis and a correlation between the strain of spirals and the shear resistance capacity of steel in hollow and solid section concrete columns. Furthermore, shear strength components (Vc, V, Vp) and concrete stress were investigated.

Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete

  • Gali, Sahith;Subramaniam, Kolluru V.L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.365-375
    • /
    • 2017
  • An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions ($V_f$) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response.

Torsional analysis of a single-bent leaf flexure

  • Nguyen, Nghia Huu;Lim, Byoung-Duk;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.189-198
    • /
    • 2015
  • We present a torsion analysis of single-bent leaf flexure that is partially restrained, subject to a torsional load. The theoretical equations for the torsional angle are derived using Castigliano's theorem. These equations consider the partially restrained warping, and are verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is performed and verified via FEA. The results show that the errors between the theory result and the FEA result are lower than 6%. This indicates that the proposed theoretical torsional analysis with partially restrained warping is sufficiently accurate.

A Study on the improvement of damping and optimal design of beam flexure for the passive vibration isolator (수동형 음강성 저주파 제진기의 감쇠 성능 향상과 빔 유연체의 최적 설계에 관한 연구)

  • Lee, Gil-Yong;Chang, Hee-Doh;Park, Young-Ho;Park, In-Hwang;Han, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.189-195
    • /
    • 2008
  • The vibration isolator system(VIS) which has very low natural frequency could be designed by applying an axial compressive force to the beam-column flexure(BCF). In this paper a new shape of the BCF is suggested. It has stepwise axially varying properties by viscoelastic damping layer. So it has internal structural damping by damping layer during deformation. First the analytic solution is obtained for the BCF. And its critical load, buckling mode, stiffness and stress distributions are investigated. Also the dynamic properties of the VIS consist of the damping layered BCF are studied. Finally the optimal design procedure of damping layered BCF for the VIS is suggested. The improved performance of suggested VIS is verified by some experiments.

  • PDF

A Study on the Estimation of Dynamic Interlaminar Fracture Toughness on CFRP Laminates Plates (CFRP 적층판의 동적 층간파괴인성의 평가법)

  • 김지훈;김영남;판부직규;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.80-91
    • /
    • 1998
  • In this paper, the estimation of dynamic interlaminar fracture toughness on fracture mode II in CFRP(carbon fiber reinforced plastics) laminates in made. Dynamic ENF(End Notched Flexure) apparatus used in this paper is manufactured by suing Split Hopkinson Pressure Bar. The static and impact load history in the CFRP specimen is measured by using manufactured dynamic ENF tester and 3-point bending test is carried out to find the load history. Also dynamic interlaminar fracture toughness can be found by using the J integral obrained from dynamic analysis in consideration of intertia-force effect.

  • PDF

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

Flexure-Shear Behavior of Circular Bridge Columns under Cyclic Lateral Loads (반복 횡하중을 받는 원형교각의 휨-전단 거동)

  • Lee Jae-Hoon;Ko Seong-Hyun;Lee Dae-Hyoung;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.823-832
    • /
    • 2004
  • The purpose of this research is to investigate the flexure-shear behavior of bridge columns under seismic loads. Four full scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. The selected test variables are aspect ratio(1.825, 2.5, 4.0), transverse steel configuration, and longitudinal steel ratio. Volumetric ratio of transverse hoop of all the columns is 0.0023 in the plastic hinge region. It corresponds to $24\%$ of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. The columns showed flexural failure or flexure-shear failure depending on the test variables. Failure behavior and seismic performance are investigated and discussed in this paper.

Optimal Design of the Monolithic Flexure Mount for Optical Mirror Using Response Surface Method (반응표면법을 이용한 광학미러용 일체형 유연힌지 마운트 최적설계)

  • Kyoungho Lee;Byounguk Nam;Sungsik Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2023
  • An optimal design of a simple beam-shaped flexure hinge mount supporting an optical mirror is presented. An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. This side-supporting mount is flexible in the radial direction and rigid for the remaining degrees of freedom to support the mirror without transferring thermal load. Through thermo-elastic, optical and eigenvalue analysis, opto-mechanical performance was predicted to establish the objective functions for optimization. The key design parameters for this flexure are the thickness and length. To find the optimal values of design parameters, response surface analysis was performed using the design of experiment based on nested FCD. Optimal design candidates were derived from the response surface analysis, and the optimal design shape was confirmed through Opto-mechanical performance validation analysis.

FLEXURE STRENGTH OF ACRYLIC RESIN TEMPORARY BRIDGE BY PONTIC DESIGN (Pontic Design에 따른 임시가공의치의 파절강도에 관한 연구)

  • Oh Sang-Chun;Jin Tai-Ho;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • The purpose of this study was to evaluate the flexure stregth of posterior 4-unit acrylic resin bridge with different pontic designs : 1) Conventional pontic 2) Hygienic pontic and 3) Modified hygienic pontic. All specimens were made of self-curing acrylic resin for provisional restorations. Self-curing acrylic resin was filled in a silicone mold by the drop-on technique ; and was polymerized in a pressure spot under 20 psi pressure. The test specimens which were simply shaped posterior 4-unit bridge were 38mm ion 4mm wide, and 35mm thick(connector : 3mm thick). Each specimen was subjected to an increasing load of Instron machine with its tip centered on the specimen at 90-degree angle, and the machine was operated with its load cell of 50kg and its crosshead speed, 2mm/minute : and then the load values at the moment of the fracture of them were recorded. This study was also performed to analyze their stress distributions by the finite element method. The obtained results were as follows : 1. Flexure strength of the hygienic pontic(9.78kg) and the modified hygienic pontic(10.17kg) was higher than that of conventional pontic(6.96kg). But no significant difference was found between the hygienci pontic and the. modified hygienic pontic. The above statistic values were appraised by ANOVA and Duncan's multiple range test 2. Stress was concentrated on the middle portion in every group : and the stress of conventional pontic was found the greatest of all pontic designs.

  • PDF