• Title/Summary/Keyword: Flexural properties

Search Result 1,775, Processing Time 0.031 seconds

Effect of Green Tea Content on Dynamic Modulus of Elasticity of Hybrid Boards Composed of Green Tea and Wood Fibers, and Prediction of Static Bending Strength Performances by Flexural Vibration Test (녹차-목재섬유복합보드의 동적탄성률에 미치는 녹차배합비율의 영향 및 휨 진동법에 의한 정적 휨 강도성능 예측)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyeong;Kwon, Chang-Bea;Heo, Hwang-Sun;Byeon, Hee-Seop;Yang, Jae-Kyung;Kim, Jong-Cheol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.538-547
    • /
    • 2011
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on dynamic MOEs (modulus of elasticity) of these green tea and wood fibers composite boards were investigated. The dynamic MOEs of hybrid composite boards were lower than those of control boards without green tea, and the values decreased with the increase of green tea content. Also, the dynamic MOEs appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.06~1.54 times higher than that manufactured from $E_0$ grade. And, the differences between hybrid composite boards manufactured from both adhesive increased with the increase of green tea content. On the other hand, high correlations were found between dynamic MOE and static bending strength performances, it was concluded that static bending strength performances could be estimated from the dynamic MOE, except for a few hybrid board types with large variations.

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.

Properties of Poly(oxymethylene)/Modified Poly[styrene-b-(ethylene-1-butene)-b-styrene] Triblock Copolymer Blends (폴리(옥시메틸렌)/개질 폴리[스티렌-b-(에틸렌-1-부텐)-b-스티렌] 삼블록 공중합체 블렌드의 물성)

  • Jeon, Hyun-Uk;Kim, Seung-Woo;Kim, Gue-Hyun;Kim, Il;Ha, Chang-Sik
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.162-169
    • /
    • 2004
  • Poly[styrene-b-(ethylene-1-butene)-b-styrene] triblock copolymer (SEBS) was functionalized with 0 to 3.0 phr maleic anhydride and the amount of dicumyl peroxide used as an initiator was varied from 0 to 0.3phr. The gel content of the modified SEBS was determined by xylene extraction and poly(oxymethylene) was blended with the modified SEBS. The impact, tensile, flexural strength and morphologies of the blends were investigated. The Izod impact strength of poly(oxymethylene) was improved through its blending with modified SEBS. However, the Izod impact strength of poly(oxymethylene)/modified SEBS blend decreased above 5% modified SEBS content. Regarding the effect of dicumyl peroxide content on the Izod impact strength, the blend had a maximum Izod impact strength when poly(oxymethylene) was blended with modified SEBS prepared with 0.1 phr dicumyl peroxide. It was also confirmed by SEM micrographs that the average particle size of modified SEBS in poly(oxymethylene)/modified SEBS blends was smaller than that of SEBS in poly(oxymethylene)/SEBS blends.

Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay (접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.

Evaluating Seismic Performance of Steel Welded Moment Connections Fabricated with SN Steel (SN 강재가 사용된 강구조 용접모멘트접합부의 내진성능 평가)

  • Oh, Sang-Hoon;Choi, Young-Jae;Yoon, Sung-Kee;Lee, Dong-Gue
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.271-280
    • /
    • 2010
  • This study was programmed to fabricate a beam-to-column connection that is limited to a steel-welded moment connection with full-scale members, using SN steel. A cyclic seismic test was conducted of the nine specimens that were fabricated by choosing the test variable for the weld access hole geometry, connection design method, and RBS. From the test results, failure modes, the moment-drift behavior, and the strain distribution were provided. From the specimen material properties, the beam's nominal plastic flexural capacity and classified qualified connection as a special moment flame were calculated. By analyzing the skeleton part and the baushinger part, a range of strength-raising effects, and deformation ratios were provided, with which the seismic performance of the specimens were evaluated. The test results showed that the specimens eliminated their weld access holes that demonstrated higher seismic performance than the specimens' existing weld access holes, and that the WUF-W connection that was reinforced by the supplemental fillet weld around the shear tap that was fastened by five bolts demonstrated superior seismic performance.

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Production of Foamed Glass by Using Hydrolysis of Waste Glass(III) - Heat Treatment for Stabilization and Scale-up Test - (폐유리의 가수분해 반응에 의한 발포유리의 제조(III) - 안정화 열처리공정 및 Scale-up Test -)

  • Lee, Chul-Tae;Um, Eui-Heum
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.73-81
    • /
    • 2006
  • Heat treatment condition for the stabilization of foamed glass block through the foaming process of the hydrolized waste glass was investigated and scale-up test for the manufacturing of foamed glass was also attempted for the actual foaming process. Proper heat treatment condition was quenching from the foaming temperature to $550{\sim}600^{\circ}C$ for stabilization, and then annealing from stabilization temperature to $200^{\circ}C$ and holding up at $200^{\circ}C$ for removal thermal stress, and then annealing to the room temperature with cooling speed of $0.3^{\circ}C/min$. Through this heat treatment conditions, foamed glass block with size of $250mm{\times}250mm{\times}90mm$ was produced successfully. The properties of this foamed glass block showed density of $0.28{\pm}0.06g/cm^3$, thermal conductivity of $0.048{\pm}0.005kcal/hm^{\circ}C$, moisture absorption of $0.5{\pm}0.09vol%$, linear expansion coefficient of $(8.6{\pm}0.2){\times}10^{-6}m/m^{\circ}C$($400^{\circ}C$), flexural strength of $15.0{\pm}0.6kg/cm^2$, and compression strength of $39.5{\pm}0.6kg/cm^2$.

Analytical Study on Structural Behavior of Surface Damaged Concrete Member by Calcium Leaching Degradation (칼슘 용출 열화에 의해 표면이 손상된 콘크리트 부재의 구조적 거동에 관한 해석적 연구)

  • Choi, Yoon-Suk;Jang, Yong-Hwan;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.22-32
    • /
    • 2014
  • Durability is one of the most important and attractive subjects in concrete research field because not only durability of concrete is reduced by various degradation factors but also its reduction adversely influences the structural performance and service life of concrete structure. For this reason, a considerable amount of papers associated with concrete durability have been published and those researches were mainly focused on the changes of intrinsic properties of concrete due to chemicophysical degradations. However, the relationship between durability of concrete and structural behavior of concrete member has not been well established yet. In this study, calcium leaching degradation, a cause of concrete strength reduction, was dealt with. The experiments of compressive and flexural behavior of degraded concrete member were performed to evaluate the characteristics of structural behavior according to degradation level. Finally, the results from the experiments were compared with those obtained from nonlinear FEM analysis. The results from this study clearly showed that leaching degradation leads to decrease in compressive strength and compressive behavior evolves from brittle to ductile failure pattern during the degradation process. Load capacity and flexible rigidity of the degraded RC member decreased when the degradation level increased, in compressive zone. Additionally, it was found that the values from nonlinear FEM analysis, CDP model in ABAQUS, coincided well with the experimental results.

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

A Study on the Evaluating Method the most Favorable Mixture Proportion of Blended Fine Aggregate for Effective Application of Recycled Aggregate (재생골재의 효율적인 활용을 위한 혼합잔골재의 최적배합평가방법에 관한 연구)

  • Han, Cheon-Goo;Yoon, Gi-Won;Lee, Gun-Cheol;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.113-119
    • /
    • 2006
  • It is now established that more than two types of blended aggregate have beneficial effects on quality and supply of concrete in the long run. However, studies on blended aggregate have not widely been progressive and the evaluation method of its most favorable mixture proportion is still needed. Therefore this study investigated the most favorable mixture proportion through the physical experiment of fresh and hardened state's cement mortar, in response to three types of composite ratio, natural fine aggregate(Ns), crushed fine aggregate(Cs) and recycled fine aggregate(Rs). Test showed that increase of blending ratio of Ns and Cs improved fluidity of mot1ar. For the properties of compressive and flexural strength, mortar blending Ns and Cs properly, exhibited similar value to one using only Cs, while mortar mixing Rs showed lower strength value as less as 6% of control one. Mortar using only Rs exhibited the largest drying shrinkage value. In addition, even thought it is not a clear quantitative analysis, technical-imaging-skill presenting the most favorable mixture proportion 3-dimensionally is proposed in this research, in order to notify the proportion easily.

  • PDF