• 제목/요약/키워드: Flexural properties

검색결과 1,771건 처리시간 0.031초

유리섬유가 충전된 공압출 목재.플라스틱 복합재의 굽힘 특성에 관한 연구 (A Study on the Flexural Property of Glass Fiber Filled Coextruded Wood Plastic Composites)

  • 김범준
    • 한국가구학회지
    • /
    • 제24권4호
    • /
    • pp.379-388
    • /
    • 2013
  • In this study, the effect of various glass fiber (GF) contents in a shell layer and shell thickness changes on the flexural property of coextruded wood plastic composites (WPCs) in combination with three core systems (weak, moderate, and strong) was investigated. GF behaved as an effective reinforcement for the whole coextruded WPCs and GF alignments in the shell layer played an important role in determining the flexural property of the coextruded WPCs. At a given shell thickness, the flexural property of the whole coextruded WPCs was improved with the increase of GF content in shell. For core quality, when the core is weak, increase of GF content in shell led to improved flexural property of the whole composites and increase of shell thickness helped it. On the other hand, when the core is strong, the flexural property of the whole composites showed reduced features at low GF content in shell and increase of shell thickness aggravated it. This approach provides a method for optimizing performance of the coextruded WPCs with various combinations of core-shell structure and properties.

  • PDF

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.

Flexural performance of composite beams with open-web π-shaped steel partially-encased by concrete

  • Liusheng Chu;Yunhui Chen;Jie Li;Yukun Yang;Danda Li;Xing Ma
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.419-428
    • /
    • 2024
  • Prefabricated partially-encased composite (PEC) structural component is widely used in construction industry due to its superior structural performance and easy assembly characteristic. However, the solid web in traditional PEC components tends to split concrete into two halves, thus potentially reduces structural integrity and requires double concrete pouring. To overcome the above disadvantages, a new PEC beam with open-web π-shaped steel is proposed in this paper. Four open-web PEC beams with varying sectional height, flange thickness and web void rate were constructed and tested under flexural loads. During experimental tests, all beams exhibited typical flexural failure modes with strong moment capacities and excellent ductility. Owing to the unique construction form of web opening, steel-concrete bonding properties were enhanced and very small relative steel-concrete slips were observed. Experimental results also showed that the flexural capacity of such PEC beams increased with the increase of the sectional height and flange thickness, while was not affected by the web void rate. At last, a flexural capacity formula of the open-web PEC beam was proposed based on the whole section plastic rule. The formula results agreed well with experimental results.

치과용 생체보철물 제작을 위한 TZP 단일구조 전부도재관 블럭의 물성과 저온열화 후 굴곡강도에 관한 연구 (The research about the physical properties and flexural strength changed by Low Temperature Degradation of TZP monolithic all-ceramic crown block to make bio-prosthetic dentistry)

  • 이종화;박천만;송재상;임시덕;김재도;김병식;황인환;이성국
    • 대한치과기공학회지
    • /
    • 제34권2호
    • /
    • pp.83-93
    • /
    • 2012
  • Purpose: The objective of this study is to find out physical properties and the flexural strength changed by the low temperature degradation of the block which is needed to make bio-prosthetic dentistry which is better than feldspar affiliated ceramic made by building up ceramic powder and also to apply this to the clinical use of zirconia monolithic all-ceramic crown. Methods: Flexural strength of each sample was evaluated before and after the Low Temperature Degradation, and physical properties of the Tetra Zirconia Block containing 3mol % was evaluated as well. The average and standard deviation of each experimental group were came out of the evaluation. Statistical package for social science 18.0 was used for statistics. Results: The average density of the monolithic all-ceramic crown was $6.0280{\pm}0.0147g/cm$, the relative density was 99.01 %. When the sample was sintered at $1480^{\circ}C$ the diameter of average particle was $396.62{\pm}33.71nm$. All the samples had no monolithic peak after XRD evaluation but only had tetragonal peak. There were statistically significant differences in the result of flexural strength of the samples evaluated after and before the low temperature degradation, the flexural strength before the low temperature degradation was $1747.40{\ss}{\acute{A}}$, at the temperature of $130^{\circ}C$ the flexural strength after the low temperature degradation was 1063.99MPa (p<0.001). There was statistically significant difference in the result of strength of 1020.07MPa after the low temperature degradation at the temperature of $200^{\circ}C$ (p<0.001). Conclusion: The block which was made for this evaluation possesses such an excellent strength among dental restorative materials that it is thought to have no problems to use for tetragonal zirconia polycrystal.

후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성 (Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete)

  • 김동휘;장석준;김선우;박완신;윤현도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권3호
    • /
    • pp.40-47
    • /
    • 2021
  • 이 연구는 후크형 강섬유의 체적비 및 형상비에 따른 콘크리트 설계기준강도 30MPa를 갖는 콘크리트의 역학적 특성, 휨 및 압축거동에 미치는 영향에 대하여 분석한다. 실험에서 형상비가 상이한 3종류의 섬유가 사용되었다. 섬유의 형상비는 64, 67, 80이며 섬유의 보강량은 체적비 0.25%, 0.50% 및 0.75%가 선정되었다. 강섬유 보강 콘크리트의 휨거동은 하중-균열폭 곡선, 휨강도 및 휨인성이 평가되었다, 압축거동은 압축응력-변형률 관계 곡선, 압축강도 및 인성 등이 평가되었다. 실험결과로부터 강섬유 보강 콘크리트의 휨강도, 휨인성 및 파괴에너지는 강섬유 혼입량이 증가됨에 따라 향상되는 것으로 나타났다. 그러나 형상 64와 67인 강섬유로 보강된 콘크리트의 역학적 특성은 큰 차이를 보이지 않았다. 이 연구에서 검토된 강섬유 보강 콘크리트의각 배합에 대한 유럽기준(MC2010)에 의한 산정된 휨 잔여강도는 기준에서 인장 철근 또는 보강 매쉬를 대체할 수 있는 한계기준을 모두 충족하는 것으로 나타났다.

선형 이관능성 DGEBF/선형아민(EDA, HMDA) 경화계의 경화제 사슬길이와 물성과의 관계에 대한 연구 (A Study of Relations of Chain Lengths and Properties for Bifunctional linear DGEBF/Linear Amino (EDA, HMDA) Cure Systems)

  • 명인호;이재락
    • Composites Research
    • /
    • 제17권6호
    • /
    • pp.37-43
    • /
    • 2004
  • 경화제의 사슬길이와 화학구조 차이가 반응특성, 열적, 기계적특성에 미치는 영향을 조사하기 위하여 선형구조를 가지고 양쪽 막단기에 에폭시기를 갖는 범용 에폭시수지인 DCEBF를 양쪽 관능기가 동일하고 주쇄의 사슬길이가 서로 다른 선형아민 경화제인 EDA와 HMDA로 각자 1:1 당량비로 혼합하여 예비 및 후 경화조건으로 경화하였다. 그 결과, 수지 경화물의 특성은 경화제 주쇄의 탄소원자수에 따라 큰 영향을 받는 것으로 밝혀졌다. 즉, 주쇄의 길이가 짧은 EDA 경화계는 길이가 긴 HMDA 경화계보다 열안정성, 밀도, 부피수축(%), 유리전이온도, 인장탄성률 및 인장강도, 굴곡탄성률 및 굴곡강도의 값이 높게 나타났고, 반면에 최대발열온도, 에폭시기의 전환률, 선팽창계수의 값은 낮게 나타났다. 이는 주쇄의 탄소원자수 2개를 가지는 EDA가 3차원 망목상 공간구조 형성과정에서 packing capability가 우수하여 rigid한 특성을 가지기 때문이다. 굴곡 파단 특성은 굴곡탄성률과 굴곡강도와 밀접한 관계를 나타내었다.

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Effect of Silica Particle Size on the Mechanical Properties in an Epoxy/Silica Composite for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.248-251
    • /
    • 2012
  • In order to develop a high voltage insulation material, epoxy/micro-silica composites (EMC) and epoxy/micro-silica/nano-silica composites (EMNC) with three different particle sizes in ${\mu}m$ and one particle size in nm were prepared and their tensile and flexural tests were carried out and the data was estimated by Weibull statistical analysis. The tensile strength of the neat epoxy was 82.8 MPa and those of the EMCs were larger than that of the neat epoxy, and they were much more advanced by the addition of 10 nm sized nano-silica to the EMCs. Flexural strength showed the same tendency of the tensile strength. As the micro-particle size decreased, tensile and flexural strength increased.

잔골재의 종류에 따른 초속경콘크리트의 특성에 관한 연구 (A Study on the Characteristics of Rapid-set concrete as to Fine aggregate Kinds)

  • 정해동;강의주;이환우;장희석;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.417-422
    • /
    • 2001
  • The purpose of this study is to investigate experimentally the workability, compressive and flexural strength properties of rapid-set concrete with various mixture. The kinds of fine aggregate(river sand, sea sand, crushed sand), water-cement ratio(40%, 45%, 50%), sand-aggrega to ratio(33%, 36%, 39%) were chosen as the experimental parameters. Test variables are temperature of concrete, slump, air contents, compressive and flexural strength. The compressive and flexural strength for 3 hours and 6 hours were tested. As result, it was shown that temperature of concrete involved 45$^{\circ}C$, some time later decreased. The workability were decreasing in steps as the sand-aggregate ratio increased and crushed sand was the highest value. Higher compressive and flexural strength was shown following the order of river sand, sea sand, crushed sand regardless of sand-aggregate ratio. But the values of gap was just a little.

  • PDF