• Title/Summary/Keyword: Flexural moment

Search Result 538, Processing Time 0.029 seconds

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie;Chen, Yiyan;Huang, Qiao;Song, Xiaodong;Luo, Bingqing;Xu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.737-749
    • /
    • 2020
  • A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

Flexural Strength of PHC Pile Reinforced with Infilled Concrete, Transverse and Longitudinal Reinforcements (내부충전 콘크리트와 횡보강 및 축방향 철근으로 보강된 PHC 말뚝의 휨강도)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Lee, Bang-Yeon;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The pre-tensioned spun high strength concrete (PHC) pile has poor load carrying capacity in shear and flexure, while showing excellent axial load bearing capacity. The purpose of this study is to evaluate the flexural performance of the concrete-infilled composite PHC (ICP) pile which is the PHC pile reinforced with infilled concrete, transverse and longitudinal reinforcement for the improvement of shear and flexural load carrying capacity. The ICP pile specimen was designed to make allowable axial compression and bending moment higher load bearing capacity than those determined through the investigation of abutment design cases. The allowable axial compression and bending moment of the ICP pile was obtained using the program developed for calculating the axial compression - bending moment interaction. Then, ICP pile specimens were manufactured and flexural tests were performed. From the test results, it was found that the maximum bending moment of the ICP pile was approximately 45% higher than that of the PHC pile and the safety factor of ICP pile design was about 4.5 when the allowable bending moment was determined to be 25% of the flexural strength.

Verification on the Axial and Flexural Plastic Resistance Analysis of Unconfined Corrugate Steel Sheet and Concrete Composite Section (비구속 파형강판 합성단면의 압축 및 휨 소성해석방법에 관한 분석)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • For the composite section of corrugated steel sheet and concrete, which is often used in soil structures, a conservative design method based on the ultimate strength state is still applied due to the difficulty of the analysis of compatibility condition. In this study, plastic analysis was performed on the flexural and axial strength of the composite section using two limit state design methods, LRFD and LSD. As a result of the analysis of the experimental results, the LRFD analysis value was interpreted as a conservative results for compressive strength, and it was analyzed that the effect of the concrete compressive strength was greater than the steel ratio of the steel plate. The flexural strength was analyzed to be in good agreement with the experimental results by the LSD analysis. From the parametric analysis on the design variables, the hogging moment, which is affected by the tensile strength of the steel plate, slightly decreased the increasing rate of the strength due to the influence of the bolts connection, but the sagging moment linearly increased according to the increment of steel reinforcement ratio.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Study on Relationship of Flexural Moment-Curvature Based on Bond Property of Reinforced Concrete Member (철근콘크리트 부재의 부착특성을 고려한 휨모멘트-곡률 관계에 관한연구)

  • 장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The object of this study is to propose the Flexural moment-curvature relationship based on the bond property between concrete and steel for noncracking zone, to evaluate the flexural displacement of reinforced concrete member. The bond-slip relationship and the strain hardening effect of steel were taken into consideration in order to evaluate the spacing of the cracks and the curvature distribution. Calculated curvature distribution along the longitudinal axis was transformed into equivalent curvature distribution. The flexural displacement was calculated by means of double integrals of the equivalent curvature. Furthermore, 34 beams were tested in order to verify the proposed procedure Calculated values agreed well with the experimental data, and so it is pointed out that proposed method is widely acceptable for the practical evaluation of flexural displacement of reinforced concrete member.

Effect of Tension, Compression and Lateral Reinforcement In Ductility Ratio in RC Flexural Members (철근콘크리트 휨 부재에서 인장, 압축 및 횡보강근이 연성률에 미치는 효과)

  • 연규원;박찬수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.553-560
    • /
    • 2001
  • The ductility capacity should be estimated for inelastic analysis and design of reinforced concrete flexural members. Therefore, to estimate the ductility capacity, the model of moment-curvature relationship of reinforced concrete flexural member is assumed in this study. The curvature, rotation, and displacement(deflection) of reinforced concrete cantilever beams are analyzed and tested. The analytical results are compared with the test results. According to the analytical and test results, the assumed model of moment-curvature relationship in this study is adequate in flexural analysis of reinforced concrete members because the analytical results are well agreed with the test results, and it is resonable to express the ductility capacity in the rotation or displacement ductility, Because the curvature ductility is the limited index in a certain section. It is investigated that the ductility capacity is proportional to lateral reinforcement and compression reinforcement and inversely proportional to tension reinforcement.

Experimental and numerical investigation on the behavior of concrete-filled rectangular steel tubes under bending

  • Zhang, Tao;Gong, Yong-zhi;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.231-253
    • /
    • 2021
  • Pure bending loading conditions are not frequently occurred in practical engineering, but the flexural researches are important since it's the basis of mechanical property researches under complex loading. Hence, the objective of this paper is to investigate the flexural behavior of concrete-filled rectangular steel tube (CFRT) through combined experimental and numerical studies. Flexural tests were conducted to investigate the mechanical performance of CFRT under bending. The load vs. deflection curves during the loading process was analyzed in detail. All the specimens behaved in a very ductile manner. Besides, based on the experimental result, the composite action between the steel tube and core concrete was studies and examined. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the computed results with experimental observations. The full curves analysis on the moment vs. curvature curves was further conducted, where the development of the stress and strain redistribution in the steel tube and core concrete was clarified comprehensively. It should be noted that there existed bond slip between the core concrete and steel tube during the loading process. And then, an extensive parametric study, including the steel strength, concrete strength, steel ratio and aspect ratio, was performed. Finally, design formula to calculate the ultimate moment and flexural stiffness of CFRTs were presented. The predicted results showed satisfactory agreement with the experimental and FE results. Additionally, the difference between the experimental/FE and predicted results using the related design codes were illustrated.

Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles (프리스트레스를 받는 중공형 콘크리트 충전 강관말뚝의 휨거동 해석)

  • Chung, Heung-Jin;Paik, Kyu-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • A nonlinear finite element analysis was conducted in order to examine the moment capacity and flexural behaviour of hollow prestressed concrete filled steel tube(HCFT) piles which compose hollow PHC piles inside thin wall steel tubes. The parameters investigated in this study were various contact conditions between concrete and steel tube, thickness of concrete tube and various PC strands. A simple method is proposed to determine the ultimate flexural strength based on plastic stress distribution method. In order to verify the proposed method, calculated moment capacity of various HCFT piles are compared with the experiment and numerical analysis results.

Analytical Study of Reinforced Concrete Beams Strengthened with Fiber Reinforced Plastic Laminates (적층판으로 보강된 철근콘크리트보에 대한 해석적 연구)

  • Chae, Seoung-Hun;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.206-211
    • /
    • 2004
  • This paper deals with the flexural strengthening of reinforced concrete beams by means of thin fiber reinforced plastic(FRP) laminas. This study focuses on modeling of structural of concrete bonded FRP laminate in flexural bending members. Used computational equation is derived by relation of stress and strain. The section analysis is based on experimental observations of a linear strain distribution in the cross section until failure, and a multi-linear moment-deflection curve that is divided into four regions, each terminated by a similarly numbered point. The load-deflection relationship in each region is assumed to be linear. The present model is validated to compare wit the experiment of 4-point bending tests of R/C rectangular beams strengthened with CFRP laminates, and has well predicted the moment-displacement relationships of members.

  • PDF

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.