• Title/Summary/Keyword: Flexural members

Search Result 520, Processing Time 0.029 seconds

Analytical Study of Reinforced Concrete Beams Strengthened with Fiber Reinforced Plastic Laminates (적층판으로 보강된 철근콘크리트보에 대한 해석적 연구)

  • Chae, Seoung-Hun;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.206-211
    • /
    • 2004
  • This paper deals with the flexural strengthening of reinforced concrete beams by means of thin fiber reinforced plastic(FRP) laminas. This study focuses on modeling of structural of concrete bonded FRP laminate in flexural bending members. Used computational equation is derived by relation of stress and strain. The section analysis is based on experimental observations of a linear strain distribution in the cross section until failure, and a multi-linear moment-deflection curve that is divided into four regions, each terminated by a similarly numbered point. The load-deflection relationship in each region is assumed to be linear. The present model is validated to compare wit the experiment of 4-point bending tests of R/C rectangular beams strengthened with CFRP laminates, and has well predicted the moment-displacement relationships of members.

  • PDF

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

Structural Performance of Flexural Members Enlarged with Epoxy Mortar System at Soffit (변형에폭시계 재료를 사용한 하부증대 보의 구조적 성능)

  • 홍건호;조하나;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.833-838
    • /
    • 1998
  • This paper is aimed to investigate structural performance of flexural members enlarged with epoxy mortar at soffit. Main test variables are steel ratio and interface treatment method and six test beams are tested to investigate the effect of each test variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. Test results show that section enlarged beams can carry almost same load of the monolithic beams with same size and the flexural stiffness and cracking moments are increased about 2.5 times and 50 to 70%of failure moment in comparison with same sized control beam, respectively. However, deflections and curvatures are decreased at the same load and interface fractures are not discovered at the ultimate load.

  • PDF

An Experimental Study on the Evaluation of Effective Flexural Rigidity in Reinforced Concrete Members (철근콘크리트 부재의 유효 휨강성 평가를 위한 실험적 연구)

  • Kim Sang Sik;Lee Jin Seop;Lee Seung Bae;Jang Su Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.131-134
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

  • PDF

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

Nominal flexural strength of high-strength concrete beams

  • Al-Kamal, Mustafa Kamal
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The conventional ACI rectangular stress block is developed on the basis of normal-strength concrete column tests and it is still being used for the design of high-strength concrete members. Many research papers found in the literature indicate that the nominal strength of high-strength concrete members appears to be over-predicted by the ACI rectangular stress block. This is especially true for HSC columns. The general shape of the stress-strain curve of high-strength concrete becomes more likely as a triangle. A triangular stress block is, therefore, introduced in this paper. The proposed stress block is verified using a database which consists of 52 tested singly reinforced high-strength concrete beams having concrete strength above 55 MPa (8,000 psi). In addition, the proposed model is compared with models of various design codes and proposals of researchers found in the literature. The nominal flexural strengths computed using the proposed stress block are in a good agreement with the tested data as well as with that obtained from design codes models and proposals of researchers.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

Analysis of Deflection of Reinforced Concrete Flexural Members under Monotonic Loading (단조하중을 받는 철근콘크리트 휨부재의 처짐해석)

  • Byun, Keun Joo;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.69-78
    • /
    • 1991
  • This paper concentrates on the analysis of deflection of the reinforced concrete flexural members under monotonic loading. Concrete is treated as an orthotropic nonlinear material. The concept of equivalent strain and crack strain are used to establish independent stress-strain relationships in the directions of orthotropy. Steel is modeled as an elstoplastic material, and von Mises failure criterion is applied. The finite element computer program for the nonlinear analysis of the deflection of RC flexural members under monotonic loading is developed. The accuracy and reliability of the numerical procedure is demonstrated by the FEM analysis and experiments of the under reinforced concrete beams over the entire loading range up to failure.

  • PDF

Study on Damage Evaluation Model for Reinforced Concrete Members (철근콘크리트 부재의 손상량 평가 모델에 관한 연구)

  • Cho, Byung Min;Maeda, Masaki;Kim, Taejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • The purpose of this study is to improve the previous damage evaluation model for RC members which is proposed by Igarashi[1] in 2010.The previous model was not confirmed by enough data of damage such as, residual crack length, width and area for exfoliation of concrete, etc. In addition, validation of the model is still insufficient. Therefore, experiment of a real-scale RC structure and experiment of RC columns using the high-strength concrete were conducted to gather the data of damage in RC members. The investigation has been conducted gathering the data not only additional experiments data but also existing data for modification of damage evaluation model. It has been investigated on changing damage in RC due to axial force ratio, shear reinforcement and shear span ratio. As a result, several problems were founded in the previous model, such as, hinge length($l_p$), spacing of flexural crack($S_{av,f}$), total width of flexural cracks regulated by maximum width of flexural crack($n_f$) and total width of shear cracks regulated by maximum width of shear crack($n_s$). New model is proposed and evaluated the damage properly.

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF