• Title/Summary/Keyword: Flexural cracking width

Search Result 39, Processing Time 0.025 seconds

Flexural behavior and flexural capacity prediction of precast prestressed composite beams

  • Hu, Manxin;Yang, Yong;Yu, Yunlong;Xue, Yicong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.225-238
    • /
    • 2022
  • In order to improve the cracking resistance of reinforced concrete and give full play to the advantages of prefabricated assembly structure in construction, prestressed reinforced concrete composite beam (PRCC) is proposed. Through the bending static test of seven I-shaped beam specimens, the bending failure modes and bearing capacity of PRCC and reinforced concrete composite beam are compared and analyzed, and the effects of prestress size, prestressed reinforcement layout and prestress application sequence on the flexural behavior of PRCC beams are studied. The results show that the cracking load and ultimate load of PRCC beams significantly increased after prestressing, and prestressed tendons can effectively control the crack development. With the increase of prestressing degree, the deformation resistance and bending stiffness of PRCC beams are increased. The application sequence of prestress has little influence on the mechanical properties of PRCC beams. The crack width, stiffness and normal section bearing capacity of PRCC beam are analyzed, and the calculated results are in good agreement with the experimental results.

Crack control of precast deck loop joint using high strength concrete

  • Shim, Changsu;Lee, Chi dong;Ji, Sung-woong
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.527-543
    • /
    • 2018
  • Crack control of precast members is crucial for durability. However, there is no clear provision to check the crack width of precast joints. This study presents an experimental investigation of loop joint details for use in a precast bridge deck system. High strength concrete of 130 MPa was chosen for durability and closer joint spacing. Static tests were conducted to investigate the cracking and ultimate behavior of test specimens. The experimental results indicate that current design codes provide reasonable estimation of the flexural strength and cracking load of precast elements with loop joint of high strength concrete. However, the crack width control of the loop joints with high strength concrete by the current design practices was not appropriate. Some recommendations to improve crack control of the loop joint were derived.

Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region (합성거더 부모멘트부의 균열거동 평가)

  • Youn, Seok-Goo;Seol, Dae-Ho;Ryu, Hyung-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF

Stiffness Reduction Factor for Flat-Plate Structures under Combined Load (조합하중을 받는 무량판 구조의 강성 감소 계수에 관한 고찰)

  • 송진규;최정욱;윤정배
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.302-310
    • /
    • 2003
  • Cracking of slabs will be caused by applied load and volume changes during the life of a structure and thus it reduces flexural stiffness of slabs. The effect of slab cracking must be considered for appropriate modeling of the flexural stiffness for frame members used in structural analysis. Analytical and experimental study was undertaken to estimate the stiffness reduction of slabs. In the analytical approach, the trend of slab stiffness reduction related to gravity and lateral loads is found and the stiffness reduction factor ranged from a half to a quarter in ACI building code is reasonable when defining range. Analyzing results of the test by Hwang and Moehle for 0.5% drift show that the differences of rotational stiffness on the connection types is found and good results of lateral stiffness using the value of one-third is obtained.

  • PDF

Flexural Fracture Behavior of Reinforced Concrete Beam Based on Fracture Mechanics Approach (파괴역학에 근거한 철근콘크리트 보의 휨 파괴거동)

  • 어석홍;최덕진;홍기호;김희성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.149-154
    • /
    • 2002
  • An analytical fracture mechanics approach was used to investigate the fracture behavior of reinforced concrete beams. By use of this approach based on fracture mechanics concepts, the crack width and length as well as the strength and cracking stability of reinforced concrete beams were investigated. The results obtained from the analytical studies were also discussed in terms of the minimum reinforcement ratio and crack width specified in design code provisions. The analytical approach based on fracture mechanics concepts are very useful to predict the fracture behavior of reinforced concrete beams.

  • PDF

Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads

  • Mohamed Emara;Ahmed Hamoda;Jong Wan Hu
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.

Determination of Crack Width and Crack Spacing in Reinforced Concrete Flexural Members (철근(鐵筋)콘크리트 휨부재의 균열폭 및 균열간격의 결정)

  • Kang, Young Jin;Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.103-111
    • /
    • 1985
  • Presented is a study on the determination of crack width and crack spacing in the reinforced concrete flexural members. The derivation of crack width and crack spacing is based on the recently developed cracking theory. The new prediction formulas for the crack widths and crack spacings are proposed. An experiment for the reinforced concrete beams was conducted to compare with the proposed formulas. The comparisons of the present prediction formulas with our tests and other test data show good agreement. The present crack width formula has been also compared with the well-known ACI formula originally proposed by Gergely & Lutz. It was found that the present crack width formula shows better correlation with test data than that of Gergely & Lutz.

  • PDF

An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams (포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동)

  • Lee, Seong-Cheol;Choi, Young-Cheol;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF

Experimental study on the relationship between direct tensile stress and crack opening displacement of UHPC (UHPC의 직접인장응력과 균열개구변위와의 관계에 관한 실험적 연구)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.433-436
    • /
    • 2008
  • In order to estimate the mechanical properties of ultra high performance concrete, the most important is to evaluate its tensile behavior. The tensile behavior of concrete is generally characterized by the elastic behaviour before cracking and tensile stress-crack width relationship after cracking. We carried out the direct tensile and flexural tensile test and compared the tensile behaviors obtained by the direct tensile test and by inverse analysis of the flexural tensile test results. We compared the obtained tensile behavior with that of JSCE recommendations for ultra high performance concrete as well. we could see that the tensile stress-crack width relationship obtained from the flexural tensile test results using inverse analysis had good agreement with directly obtained tensile behaviour with direct tensile test and showed similar tensile softening behaviour introduced in JSCE recommendations for ultra high performance concrete.

  • PDF

Experimental Study of Flexural Behavior of Reinforced Concrete Beams with Different Types of Coarse Aggregates (순환골재 치환률에 따른 철근콘크리트 보의 휨거동에 관한 실험적 연구)

  • Lee, Young-Oh;Jeon, Esther;Yun, Hyun-Do;You, Young-Chan;Kim, Keung-Hwan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.45-48
    • /
    • 2006
  • This study is to evaluate flexural behavior of RC beam with different types of coarse aggregates, so called natural or recycled aggregate. Two reinforced concrete beams were manufactured with different replacement level of recycled coarse aggregates : Concrete made with 0% of coarse aggregates, concrete made with 100% of recycled coarse aggregates. From the test, the general flexural performances of RC beams with different types of coarse aggregates such as cracking moment, crack patterns, maximum moment/crack width are discussed.

  • PDF