• Title/Summary/Keyword: Flexural capacity

Search Result 909, Processing Time 0.025 seconds

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee;Atefeh Soleymani;Hamed Hasani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.

Differences of Foot Plantar Pressure Balance and Lung Capacity According to Change of Cervical Posture in Adults (경추 자세변화에 따른 성인의 족저압력 균형 및 폐활량의 차이)

  • Joo, Ha Young;Yang, Jeong Ok;Lee, Joong Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2020
  • Objective: The purpose of this study was to differences of foot plantar pressure balance and lung capacity according to cervical posture in adults. Method: The subjects consisted of 33 adults in their 20s and 50s who use M centers in B-gu and H-gu, B-City, and they measured foot plantar pressure balance and lung capacity according to cervical posture (cervical normal curvature posture, cervical flexural posture) in adults. Results: In this study, the difference of foot plantar pressure balance according to cervical posture were analyzed. In the difference between left and right foot pressure balance. It was 1.50% increased in the cervical flexural posture than in the cervical normal curvature posture, and a statistically significant difference was observed. In the difference between the anterior and posterior foot pressure balance. It was 4.28% increased in the cervical flexural posture than in the cervical normal curvature posture, and a statistically significant difference was observed. The difference of lung capacity according to cervical posture were analyzed. In the PEF, It was 58.63 l/min decreased in the cervical flexural posture than in the cervical normal curvature posture, and a statistically significant difference was observed. In the FEV1, It was 0.15 ℓ decreased in the cervical flexural posture than in the cervical normal curvature posture, and a statistically significant difference was observed. Conclusion: The results of this study suggest that had a positive effect on differences of foot plantar pressure balance and lung capacity at cervical normal curvature posture in adults. In future research, itis believed that research on the elderly who have collapsed the normal curvature posture due to aging, as well as teenagers whose normal curvature posture due to the use of smartphones, will contribute to the balance of foot pressure and improvement of the right cervical habits. In future studies, it is also believed that it will be necessary to measure lung capacity after performing exercise according to the cervical posture, thereby providing sufficient oxygen during exercise to enhance the persistence and efficiency of the movement.

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.

Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement (전단보강에 따른 일방향 중공슬래브의 휨 성능 평가)

  • Yu, Yu-Jin;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams (프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부분 프리스트레싱비와 유효 프리스트레스의 영향)

  • Yang, Keun-Hyeok;Moon, Ju-Hyun;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The present investigation evaluates the flexural behavior of pre-tensioned lightweight concrete beams under two-point symmetrical concentrated loads according to the variation of the partial prestressing ratio and the effective prestress of prestressing strands. The designed compressive strength of the lightweight concrete with a dry density of 1,770 $kg/m^3$ was 35 MPa. The deformed bar with a yield strength of 383 MPa and three-wire mono-strands with tensile strength of 2,040 MPa were used for longitudinal tensile reinforcement and prestressing steel reinforcement, respectively. According to the test results, the flexural capacity of pre-tensioned lightweight concrete beams increased with the increase of the partial prestressing ratio and was marginally influenced by the effective prestress of strands. With the same reinforcing index, the normalized flexural capacity of pre-tensioned lightweight concrete beams was similar to that of pre-tensioned normal-weight concrete beams tested by Harajli and Naaman and Bennett. On the other hand, the displacement ductility ratio of pre-tensioned lightweight concrete beams increased with the decrease of the partial prestressing ratio and with the increase of the effective prestress of strands. The load-displacement relationship of pre-tensioned lightweight concrete beam specimens can be suitably predicted by the developed non-linear two-dimensional analysis procedure. In addition, the flexural cracking moment and flexural capacity of pre-tensioned lightweight concrete beams can be conservatively evaluated using the elasticity theorem and the approach specified in ACI 318-08, respectively.

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending (휨을 받는 하이브리드 강섬유 보강 초고성능 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.771-778
    • /
    • 2014
  • This paper concerns the flexural behavior of hybrid steel fiber-reinforced ultra high performance concrete (UHPC) beams. It presents experimental research results of hybrid steel fiber-reinforced UHPC with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at providing realistic information about UHPC beams in bending in order to establish a reasonable prediction model for flexural resistance in structural code in the future. The experimental results show that hybrid steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range through 9.2 to 15.2, which means high ductility of UHPC. Also, the flexural capacity of beam which contains stirrups in pure bending zone is similar to that of beam which does not contain stirrups in pure bending zone. This result represents that the flexural capacity is not affected by the presence of stirrups whose spacing is 150 mm in bending zone.

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.

Flexural Capacity of the Composite Beam using Angle as a Shear Connector (앵글을 전단연결재로 사용하는 합성보의 휨성능)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Choi, Jong Gwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.63-75
    • /
    • 2015
  • In this study, Composite beam flexural capacity was investigated experimentally using angle as a shear connector. The main experimental parameters are the size and the spacing of the angle and the overall behavior of before and after composite. Also, the composite beam bending performance when it used with hollow PC slab and the general RC slab was compared. When determining that it synthetically, the flexural capacity of the composite beam with angle shear connector estimated 25% to 55% more strength than the nominal strength. Effects of strength parameters of composite beam by angles shear connector are size and spacing of the angle. As expected, the larger and the narrower spacing of the angles, the more strength the composite beam have. In addition, the performance of the composite beam with a hollow slab was well demonstrated by the test.