Browse > Article
http://dx.doi.org/10.12989/scs.2020.34.1.123

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners  

Zand, Ahmed W. Al (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM))
Badaruzzaman, W.H. Wan (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM))
Ali, Mustafa M. (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM))
Hasan, Qahtan A. (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM))
Al-Shaikhli, Marwan S. (Civil Engineering Department, Madenat Alelem University College)
Publication Information
Steel and Composite Structures / v.34, no.1, 2020 , pp. 123-139 More about this Journal
Abstract
The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.
Keywords
slender tube section; CFST beam; internal stiffeners; buckling failure; stiffening; cold-formed tube;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Zhang, Y.B., Han, L.H., Zhou, K. and Yang, S. (2019), "Mechanical performance of hexagonal multi-cell concretefilled steel tubular (CFST) stub columns under axial compression", Thin-Wall. Struct., 134, 71-83. https://doi.org/10.1016/j.tws.2018.09.027.   DOI
2 Zhao, X.L. and Jaspart, J.P., (2005), "Width-to-thickness ratios for classification of tubular sections", Proceedings of the 2005 Eurosteel Conference on Steel and Composite Structures (Volume-A), 183 -190
3 Zhu, A., Zhang, X., Zhu, H., Zhu, J. and Lu, Y. (2017), "Experimental study of concrete filled cold-formed steel tubular stub columns", J. Constr. Steel Res., 134, 17-27. https://doi.org/10.1016/j.jcsr.2017.03.003.   DOI
4 Ekmekyapar, T. and Al-Eliwi, B.J. (2017), "Concrete filled double circular steel tube (CFDCST) stub columns", Eng. Struct., 135 68-80. https://doi.org/10.1016/j.engstruct.2016.12.061.   DOI
5 Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A., (2018). "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485   DOI
6 Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006a), "Concretefilled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004.   DOI
7 Guler, S., Copur, A. and Aydogan, M. (2012), "Flexural behaviour of square UHPC-filled hollow steel section beams", Struct. Eng. Mech., 43(2), 225-237. http://dx.doi.org/10.12989/sem.2012.43.2.225.   DOI
8 Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. http://dx.doi.org/10.12989/scs.2001.1.1.051.   DOI
9 Han, L.H. (2004), "Flexural behaviour of concrete-filled steel tubes", J. Constr. Steel Res., 60(2), 313-337. https://doi.org/10.1016/j.jcsr.2003.08.009.   DOI
10 Han, L.H., Lu, H., Yao, G.H. and Liao, F.Y. (2006b), "Further study on the flexural behaviour of concrete-filled steel tubes", J. Constr. Steel Res., 62(6), 554-565. https://doi.org/10.1016/j.jcsr.2005.09.002.   DOI
11 Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.   DOI
12 Hassan, M.M., Mahmoud, A.A. and Serror, M.H. (2016), "Behavior of concrete-filled double skin steel tube beamcolumns", Steel Compos. Struct., 22(5), 1141-1162. http://dx.doi.org/10.12989/scs.2016.22.5.1141.   DOI
13 Kang, J.Y., Choi, E.S., Chin, W.J. and Lee, J.W. (2007), "Flexural behavior of concrete-filled steel tube members and its application", Int. J. Steel Struct., 7(4), 319-324.
14 Hilo, S.J., Badaruzzaman, W.H.W., Osman, S.A. and Al Zand, A.W. (2015), "Axial load behavior of acomposite wall strengthened with an embedded octagon cold-formed steel", Appl. Mech. Mater., 754 437-441. https://doi.org/10.4028/www.scientific.net/AMM.754-755.437.   DOI
15 Huang, C., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K., Weng, Y., Wang, S. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. 10.1061/-ASCE!0733-9445-2002!128:9-1222!.   DOI
16 Javed, M.F., Sulong, N.R., Memon, S.A., Rehman, S.K.U. and Khan, N.B. (2018), "Flexural behaviour of steel hollow sections filled with concrete that contains OPBC as coarse aggregate", J. Constr. Steel Res., 148, 287-294. https://doi.org/10.1016/j.jcsr.2018.05.035.   DOI
17 Javed, M.F., Sulong, N.R., Memon, S.A., Rehman, S.K.U. and Khan, N.B. (2017), "FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete", Thin-Wall. Struct., 119, 470-481. https://doi.org/10.1016/j.tws.2017.06.025.   DOI
18 Jiang, A.Y., Chen, J. and Jin, W.l. (2013), "Experimental investigation and design of thin-walled concrete-filled steel tubes subject to bending", Thin-Wall. Struct., 63, 44-50. https://doi.org/10.1016/j.tws.2012.10.008   DOI
19 Lee, S., Kim, S., Bang, J., Won, Y. and Choi, S. (2011), "Structural characteristics of welded built-up square concrete filled tubular stub columns associated with concrete strength", Procedia Eng., 14, 1140-1148. https://doi.org/10.1016/j.proeng.2011.07.143.   DOI
20 Helena, H.J. and Knight, G. (2005), "Behaviour of cold-formed steel hollow and concrete-filled members", Steel Compos. Struct., 5(1), 35-47. http://dx.doi.org/10.12989/scs.2005.5.1.035.   DOI
21 Al Zand, A.W., Badaruzzaman, W.H.W., Mutalib, A.A. and Hilo, S.J. (2018), "Flexural behavior of CFST beams partially strengthened with unidirectional CFRP sheets: experimental and theoretical study", J. Compos.Constr., 22(4), 04018018. 10.1061/(ASCE)CC.1943-5614.0000852.   DOI
22 Abdalla, S., Abed, F. and AlHamaydeh, M. (2013), "Behavior of CFSTs and CCFSTs under quasi-static axial compression", J. Constr. Steel Res., 90, 235-244. https://doi.org/10.1016/j.jcsr.2013.08.007   DOI
23 AIJ (1997), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architectural Institute of Japan (AIJ).
24 Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Compos. Struct., 29(2), 151-159. http://dx.doi.org/10.12989/scs.2018.29.2.151.   DOI
25 AISC (2010), Specification for structural steel buildings. American Institute of Steel Construction (AISC), Chicago, IL;
26 AL-Shaar, A.A. and Gogus, M.T. (2018), "Performance of retrofitted self-compacting concrete-filled steel tube beams using external steel plates", Adv. Mater. Sci. Eng., 2018, Article ID 3284745, 18 pages. https://doi.org/10.1155/2018/3284745.   DOI
27 Al-Zand, A.W., Hosseinpour, E. and Tawfeeq, W.M. (2017), "The effects of filling the rectangular hollow steel tube beam with concrete: an experimental case study", J. Civil Eng. Researchers. 1(3), 23-30. http://www.journalssearchers.com/ojs/index.php/jcer/article/view/22.
28 Al Zand, A.W., Badaruzzaman, W.H.W., Mutalib, A.A. and Hilo, S.J. (2016), "The enhanced performance of CFST beams using different strengthening schemes involving unidirectional CFRP sheets: An experimental study", Eng. Struct., 128 184-198. https://doi.org/10.1016/j.engstruct.2016.09.044   DOI
29 Al Zand, A.W., Hosseinpour, E. and Badaruzzaman, W.H.W. (2018), "The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme", Struct. Eng. Mech., 66(2), 229-235. https://doi.org/10.12989/sem.2018.66.2.229.   DOI
30 Ling, Y., Feng, W., Zhao, J. and Li, Y. (2014), "Study on the ultimate bearing capacity of concrete filled steel square tubular short column with PBL", Adv. Mater. Res., 941-944, 770-775. https://doi.org/10.4028/www.scientific.net/AMR.941-944.770.   DOI
31 Lu, Y., Liu, Z., Li, S. and Hu, J. (2018), "Axial compression behavior of hybrid fiber reinforced concrete filled steel tube stub column", Constr. Build. Mater., 174, 96-107. https://doi.org/10.1016/j.conbuildmat.2018.04.089.   DOI
32 Lu, Y., Liu, Z., Li, S. and Li, N. (2018), "Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns", Constr. Build. Mater., 158, 894-909. https://doi.org/10.1016/j.conbuildmat.2017.10.085.   DOI
33 Lu, Y., Liu, Z., Li, S. and Li, W. (2017), "Behavior of steel fibers reinforced self-stressing and self-compacting concrete-filled steel tube subjected to bending", Constr. Build. Mater., 156 639-651. https://doi.org/10.1016/j.conbuildmat.2017.09.019.   DOI
34 Qian, J., Zhang, Y., Ji, X. and Cao, W. (2011), "Test and analysis of axial compressive behavior of short composite-sectioned high strength concrete filled steel tubular columns", Jianzhu Jiegou Xuebao (Journal of Building Structures). 32(12), 162-169. http://en.cnki.com.cn/Article_en/CJFDTotal-JZJB201112019.htm.
35 Moon, J., Roeder, C.W., Lehman, D.E. and Lee, H.E. (2012), "Analytical modeling of bending of circular concrete-filled steel tubes", Eng. Struct., 42: 349-361. https://doi.org/10.1016/j.engstruct.2012.04.028.   DOI
36 Song, Y., Li, J. and Chen, Y. (2019), "Local and post-local buckling of normal/high strength steel sections with concrete infill", Thin-Wall. Struct., 138, 155-169. https://doi.org/10.1016/j.tws.2019.02.004.   DOI
37 Sundarraja, M.C. and Prabhu, G.G. (2013), "Flexural behaviour of CFST members strengthened using CFRP composites", Steel Compos. Struct., 15(6), 623-643. http://dx.doi.org/10.12989/scs.2013.15.6.623.   DOI
38 AS 4100 (1998), Standards Association of Australia. Steel structures code. Sydney, Australia.
39 Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2011), "Nonlinear analysis of concrete-filled steel composite columns subjected axial to loading", Struct. Eng. Mech., 39(3), 383-398. http://dx.doi.org/10.12989/sem.2011.39.3.383.   DOI
40 AISC-LRFD (1999), Load and resistance factor design specification for structural steel buildings. Chicago: American Institute of Steel Construction (AISC), Inc.,
41 Tao, Z., Han, L.H. and Wang, D.Y., (2007). "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003.   DOI
42 Wang, R., Han, L.H., Nie, J. G. and Zhao, X.L. (2014), "Flexural performance of rectangular CFST members", Thin-Walled Struct., 79, 154-165. https://doi.org/10.1016/j.tws.2014.02.015.   DOI
43 BS5400 (2005), Steel, Concrete and Composite Bridges. Part 5: code of practice for the design of composite bridges. British Standards Institution, London (UK).
44 Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2012), "Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading", Comput. Concrete, 9(6), 403-426. http://dx.doi.org/10.12989/cac.2012.9.6.403.   DOI
45 Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2013), "Behaviour of stiffened concrete-filled steel composite (CFSC) stub columns", Latin Am. J. Solids Struct., 10(2), 409-440. http://dx.doi.org/10.1590/S1679-78252013000200009.   DOI
46 Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A., (2014). "Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners". Latin Am. J. Solids Struct., 11(4), 683-703. http://dx.doi.org/10.1590/S1679-78252014000400008.   DOI
47 Yuan, F., Huang, H. and Chen, M., (2019). "Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns", Thin-Wall. Struct., 135, 196-209. https://doi.org/10.1016/j.tws.2018.11.015.   DOI
48 Wang, W.H., Han, L.H., Li, W. and Jia, Y.H. (2014), "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate", Constr. Build. Mater., 51, 352-363. https://doi.org/10.1016/j.conbuildmat.2013.10.049.   DOI
49 Yang, Y.F. and Han, L.H. (2006), "Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings", Steel Compos. Struct., 6(3), 257-284. http://dx.doi.org/10.12989/scs.2006.6.3.257.   DOI
50 Yang, Y.F. and Ma, G.L. (2013), "Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams", Thin-Wall. Struct., 66, 62-75. https://doi.org/10.1016/j.tws.2013.01.017.   DOI
51 Yang, Y.F. (2015), "Modelling of recycled aggregate concretefilled steel tube (RACFST) beam-columns subjected to cyclic loading", Steel Compos. Struct., 18(1), 213-233. https://doi.org/10.12989/scs.2015.18.1.213.   DOI
52 EC3 (2002), European Committee for Standardization. Design of Steel Structures- Part 1.1, General rules and rules for buildings. European Committee for Standardization (Eurocode 3), Brussels; Belgium.
53 Chen, J. and Jin, W.l. (2010), "Experimental investigation of thinwalled complex section concrete-filled steel stub columns", Thin-Wall. Struct., 48(9), 718-724. https://doi.org/10.1016/j.tws.2010.05.001.   DOI
54 Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. http://dx.doi.org/10.12989/scs.2018.27.2.193.   DOI
55 EC4 (2004), European Committee for Standardization. Design of Composite Steel and Concrete Structures - Part 1.1: General rules and rules for buildings, European Committee for Standardization (Eurocode 4), Brussels; Belgium.