• Title/Summary/Keyword: Flexural behaviour

Search Result 201, Processing Time 0.028 seconds

Structural behaviour of concrete beam under electrochemical chloride extraction against a chloride-bearing environment

  • Ki Yong Ann;Jiseok Kim;Woongik Hwang
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • The present study concerns a removal of chloride ions and structural behaviour of concrete beam at electrochemical chloride extraction (ECE). The electrochemical properties included 1000 mA/m2 current density for 2, 4 and 8 weeks. It was found that an increase in the duration of ECE resulted in an increase in the extraction rate of chlorides, in the range of 35-85%, irrespective of chloride contamination. In structural behaviour, the strength and maximum bending moment of specimen was always lowered by ECE. Moreover, the flexural rigidity and bending stiffness were reduced by the loss of effective cross-section area in the linear elastic range. Simultaneously, the inertia moment was substantially subjected to 70% loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

Seismic Performance Evaluation of Shear-Flexure RC Piers through Comparative test of Real Scale and Reduced Scale Model (실물 및 축소모형 비교실험을 통한 휨-전단 RC교각의 내진성능평가)

  • 곽임종;조창백;조정래;김영진;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.849-854
    • /
    • 2002
  • From the analysis results of some as-built drawings in national roadway bridges in Korea, many bridge piers are expected to show complex shear-flexural behaviour under earthquakes. But the previous research works about the seismic evaluation of bridges considered flexural behaviour RC piers only. In addition, the past bridge design specifications in Korea didn't include limitation on the amount of longitudinal lap splices in the plastic hinge zone of piers. Thus a large majority of non-seismically designed bridge piers in Korea may have lap splices in plastic hinge zone. In this study, prototype pier was selected among existent bridge piers whose failure mode is expected to be complex shear-flexural mode. And then, full scale and 1/2 reduced scale model RC piers with various longitudinal lap splice details were constructed. From the quasi static test results on these model RC piers, the effect of longitudinal lap splices on the seismic performance of bridges piers was analyzed. And the seismic capacity of the non-seismically designed shear-flexural RC piers was evaluated.

  • PDF

Flexural Behavior of Reinforced Concrete Beams Strengthened by CFRP Plates (탄소섬유판으로 보강된 철근콘크리트 보의 휨거동해석)

  • Yang, Dong-Suk;Koh, Byung-Soon;Park, Sun-Kyu;You, Young-Chan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.243-246
    • /
    • 2005
  • This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies

  • Maurel, Olivier;Dekoster, Mickael;Buyle-Bodin, Francois
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.

Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings

  • Yang, You-Fu;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.257-284
    • /
    • 2006
  • The behaviour of hollow structural steel (HSS) stub columns and beams filled with normal concrete and recycled aggregate concrete (RAC) under instantaneous loading was investigated experimentally. A total of 40 specimens, including 30 stub columns and 10 beams, were tested. The main parameters varied in the tests were: (1) recycled coarse aggregate (RCA) replacement ratio, from 0 to 50%, (2) sectional type, circular and square. The main objectives of these tests were threefold: first, to describe a series of tests on new composite columns; second, to analyze the influence of RCA replacement ratio on the compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST), and finally, to compare the accuracy of the predicted ultimate strength, bending moment capacity and flexural stiffness of the composite specimens by using the recommendations of ACI318-99 (1999), AIJ (1997), AISC-LRFD (1999), BS5400 (1979), DBJ13-51-2003 (2003) and EC4 (1994).

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.

Flexural behaviour of reinforced concrete beams strengthened with NSM CFRP prestressed prisms

  • Liang, Jiong-Feng;Yu, Deng;Xie, Shengjun;Li, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.291-295
    • /
    • 2017
  • The behaviour of reinforced concrete beams strengthened with near surface mounted (NSM) CFRP prestressed prisms was experimentally investigated. Five RC beams were tested under four point bending. All beams were made with dimensions of 300 mm in width, 2000 mm in length and 150 in depth. The effects of presstress level of CFRP prestressed prisms and prism material type were studied. The failure mode, load capacity, deflection, CFRP strain, steel strain and ductility of the tested beams were all analyzed. The results showed that the behavior of the reinforced concrete beams strengthened with NSM CFRP prestressed prisms showed a significant increase in the load-carrying capacity and the deformation capacity. The NSM CFRP prestressed prisms strengthening technique could be considered as an effective method for repairing RC structures.