• Title/Summary/Keyword: Flexural behavior of RC beam

Search Result 192, Processing Time 0.028 seconds

Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams

  • Gamino, Andre Luis;Bittencourt, Tulio Nogueira;de Oliveira e Sousa, Jose Luiz Antunes
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.187-202
    • /
    • 2009
  • This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.

An Experimental Study on Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능에 관한 실험적 연구)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.997-1002
    • /
    • 2001
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that steel reinforcement, but the design strength of CFRP is normally reduced by the bond failure between RC and CFRP. Many researches have been carried out, concerned with bond behavior between RC and CFRP to prevent the unpredicted bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP hasn't been constructed. In this study, 3 beams specimen strengthened by CFRP under the variable of bonded length were tested to derive the design bond strength of CFRP to the RC flexural members. Also 2 beams specimen strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin and the amount of primer epoxy resin. From the test results, It is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau_{a}$=8kgf/$cm^{2}$.

  • PDF

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동)

  • Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.227-234
    • /
    • 2010
  • To investigate the flexural behavior of RC beams strengthened with carbon fiber sheets, 1 control beam and 8 strengthened beams(4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of carbon fiber sheets and the existence of U-shaped band, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The proposed analytical method for strengthened beams is proved to be accurate by an experimental investigation of load-deflection curve, yield load, maximum load, and flexural rigidities in the pre- and post-yielding stages.

An Experimental Study on the Strengthening Effect of RC Beams Strengthened by CFRP (탄소섬유 보강재로 보강한 RC 보의 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.71-77
    • /
    • 2005
  • Bonded CFRP Plate method used murk in reinforcement method is very efficient for stress increment of reinforced members. But CFRP plate dosen't display enough its capacity and have the destruction characteristic of premature failure that reach failure by debond plate, because near-surface-bond using epoxy. Such destruction character of reinforced specimens take the influence at variables as steel reinforcement ratio, concrete strength, kind of reinforcement materials, reinforced length, property of epoxy used in binder and so on. In this study, performed experiment results are compared and considered on flexural performance of Near Surface Mounted Reinforcement used CFRP-Rod, as complement about structural behavior of RC beam reinforced flexural capacity in CFRP plate and premature failure of reinforcement material. Main variables of RC beam applied CFRP Plate external bond method are experimental variables as reinforcement length, reinforcement position (tension face and side face of beam) and existence of ironware in end parts. In case of CFRP-Rod, variable is reinforcement length.

  • PDF

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate (CFRP로 보강된 철근콘크리트 보의 거동 특성)

  • Park, Jung-Yeol;Hwang, Seon-Il;Cho, Hong-Dong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • This paper presents the characteristics of flexural behavior of RC beam strengthened with CFRP(Carbon Fiber Reinforced Polymer Plate). Experimental variables included the strengthening length, width, reinforcement ratio, end anchorage and preloading corresponding to 75 percent of ultimate capacity and the effects according to each experimental variables were analyzed. To study, a total 21 RC beams were constructed, tested and the response of the beams in terms of ultimate load, deflection, strain of CFRP, failure mode were examined.

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

Experiment and Nonlinear Analysis of DH Beams with Steel Form (외부철판이 사용된 DH Beam의 휨거동에 대한 실험 및 비선형해석)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • The purpose of this study is to evaluate the structural performance of DH beams. DH beam construction method uses thin steel plates as form-works and structural elements. The prefabricated plates and rebars of DH beams were transported to a construction site and erected for casting concrete at the site. In this study, the contribution of steel plates to the flexural strength was evaluated since the plates were expected to play a role as reinforcements. Five test specimens were made for experimental and analytical studies. They consisted of two DH beams for the positive moment test and two DH beams for the negative moment test and a RC beam for the comparison purpose. Test results on DH beams were compared with design equations and the RC beam test result. It was proven that DH beams demonstrated the good flexural behavior showing sufficient strengths and deformation capacities. Flexural strengths, principal strains of concrete, and rebar stresses were evaluated through nonlinear finite element analyses for two test beams. The analyses also showed that steel plates can contribute to the enhancement of flexural strength of DH beams. Based on experimental and analytical studies, it was concluded that steel plates of DH beams can be used as good flexural reinforcements.

Control Performance of Friction Dampers Using Flexural Behavior of RC Shear Wall System (전단벽식 구조의 휨거동을 이용한 마찰감쇠기의 제어성능)

  • Chung, Hee-San;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won;Byeon, Ji-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.856-863
    • /
    • 2008
  • High-rise apartments of shear wall system are governed by flexural behavior like a cantilever beam. Installation of the damper-brace system in a structure governed by flexural behavior is not suitable. Because of relatively high lateral stiffness of the shear wall, a load is not concentrate on the brace and the brace cannot perform a role as a damping device. In this paper, a friction damper applying flexibility of shear wall is proposed in order to reduce the deformation of a structure. To evaluate performance of the proposed friction damper, nonlinear time history analysis is executed by SeismoStruct analysis program and MVLEM(multi vertical linear element model) be used for simulating flexural behavior of the shear wall. It is found that control performance of the proposed friction damper is superior to one of a coupled wall with rigid beam. In conclusion, this study verified that the optimal control performance of the proposed friction damper is equal to 45 % of the maximum shear force inducing in middle-floor beam with rigid beam.

Flexural Capacity of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨성능)

  • Park, Hyun-Jung;Cho, Baik-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.177-187
    • /
    • 2004
  • This investigation attempts to analyze the flexural behavior of a strengthened beam with carbon fiber sheets in three stages according to the conditions of the constituents : elastic stage, pre-yielding stage, and post-yielding stage. The proposed analytical method for strengthened beams is compared with the experimental results such as yield load, ultimate load, and flexural rigidities. The contributions of the constituents to the strengthened beam capacity are examined from the flexural analysis. The validity of using KCI strength method to estimate ultimate moment of a strengthened beam is also investigated.