• Title/Summary/Keyword: Flexural Performance

Search Result 1,244, Processing Time 0.031 seconds

Flexural Response of Negative Moment Region of Hybrid Prestressed Precast Concrete (HPPC) System (하이브리드 프리스트레스트 프리캐스트 콘크리트 구조시스템의 부모멘트 영역 휨거동)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Heo, InWook;Kim, Kang Su;Woo, Woon-Taek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.3-10
    • /
    • 2018
  • Hybrid Prestressed Precast Concrete System (HPPC system) is a newly developed frame system that can improve the performance of precast concrete (PC) joints by post-tensioning. In particular, the details proposed in this study can reduce the lifting weight of the PC members and eliminate problems caused by cracks in the joints that occur under service loads. This study performed an evaluation on the negative moment performance of full-scaled HPPC girders. The test specimens were cast with or without slabs, with bonded or unbonded tendons, and had different post-tensioned lengths in tensile section. The test results showed that the specimens with slabs had significantly higher stiffness and strength than those without slabs. There were no differences in the flexural behavior between those with bonded or unbonded tendons, and between those with short or long post-tensioned lengths in the negative moment region.

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie;Chen, Yiyan;Huang, Qiao;Song, Xiaodong;Luo, Bingqing;Xu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.737-749
    • /
    • 2020
  • A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

Seismic Response of Concrete Walls with Steel Boundary Elements (강재 경계요소를 갖는 콘크리트 벽체의 내진 성능)

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.290-297
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems associated with such a heavily reinforced region. Two wall specimens containing rectangular hollow structural sections(HSS) and channels at their ends respectively were constructed rectangular hollow structural sections(HSS) and channels ar their ends respectively were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. One companion standard reinforced concrete wall specimen was also tested for the comparison purpose At an Initial stage all three specimens were carefully detailed to have the approximately same flexural capacity. Analysis and comparison of test results indicated that the reversed cyclic responses of the three walls showed similar hysteretic properties but in those with steel boundaries local bucking of the corresponding steel elements following significant yielding of structural steel was prominent. Design procedures considering local instability of the structural steel elements and the interaction between steel chord and concrete web members in such composite walls are presented.

  • PDF

Displacement Evaluation on the Reinforced Concrete Shear Wall (철근 콘크리트 전단벽의 변형성능 평가)

  • 김정식;최윤철;서수연;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.185-190
    • /
    • 2002
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented In evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superpositopn of shear and flexural deformation. Variable crack angle truss model with a modification and existing analysis program(XTRACT) are used in calculating shear and flexural displacement, respectively. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the displacement capacity of shear wall could be well predicted by using the process.

  • PDF

Rehabilitation of notched circular hollow sectional steel beam using CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.151-161
    • /
    • 2018
  • The application of carbon fiber reinforced polymer (CFRP) composites for rehabilitation of steel structures has become vital in recent years. This paper presents an experimental program and a finite element (FE) modelling approach to study the effectiveness of CFRP patch for repair of notch damaged circular hollow sectional (CHS) steel beams. The proposed modeling approach is unique because it takes into account the orthotropic behavior and stacking sequence of composite materials. Parametric study was conducted to investigate the effect of initial damage (i.e., notch depth) on flexural performance of the notched beams and effectiveness of the repair system using the validated FE models. Results demonstrated the ability of CFRP patch to repair notched CHS steel beams, restoring them to their original flexural stiffness and strength. The effect of composite patch repair technique on post-elastic stiffness was more pronounced compared to the elastic stiffness. Composite patch repair becomes more effective when the level of initial damage of beam increases.

A Study on the Hysteretic Behavior of High Strength Steel Fiber Reinforced Concrete Beam-Column Joint (강섬유 보강 고강도 철근 콘크리트 보-기둥 접합부의 이력 거동에 관한 연구)

  • 오경남;이정한;유영찬;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.533-536
    • /
    • 1999
  • The primary purpose of this study is to investigate experimentally the effect of steel fiber reinforcement on the total energy dissipation capacity of R/C flexural members and to make a contribution to the construction of 40~60 story R/C high rise building by developing the new materials and reinforcing details which can improve the seismic performance of high-strength R/C beam-column joints. Experimental research was carried out on 4 type specimen under cyclic loading. Main variables are steel fiber reinforcement, intermediate reinforcements and yield strength of rebars. From the test results, steel fiber reinforcement can improve the ductility of R/C flexural members.

  • PDF

Design of Microstrip Antenna with Composite Laminates and its structural rigidity (복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Lining(I : Application of New Type Accelerator for High Strength Shotcrete) (Permanent Shotcrete Tunnel Lining 구축을 위한 고성능 숏크리트 개발( I : 고강도 숏크리트 개발을 위한 새로운 급결제 적용))

  • 박해균;이명섭;김재권;안병제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1023-1030
    • /
    • 2002
  • From the early 1980s, the New Austrian Tunnelling Method (NATM) has been developed as a one of the standard tunneling method in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate accelerator (waterglass) was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength and equivalent flexural strength were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Engineering Characteristics of Permeable Mortar using Water-Quenched Blast Furnace Slag as Eine Aggregates (고로급냉슬래그를 활용한 투수성 모르타르의 공학적 특성에 관한 기초연구)

  • 방윤경;박재로
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.4
    • /
    • pp.77-83
    • /
    • 2000
  • In this study, engineering characteristics of permeable mortar using water-quenched blast furnace slag as fine aggregates were analyzed by laboratory experiments to examine its suitability for permeable concrete pavement techniques. Engineering characteristics of mortar were investigated by performing both the compressive, flexural strength tests together with the constant head permeability tests for twenty-six types of mixing samples having different percetage of slag, cement and water. After 28days of curing, every performance was tested to find optimum mixture. When the go coefficient of permeability was 10$\^$-2/cm / sec and flexural strength was 30kg/㎠, we conclusion that the best mix design in permeable mortar was made in the condition,60% of cement and 20% of water percentage of unit slag contents. From the present investigations, it is concluded that suitability for permeable concrete pavement techniques using water-quenched blast furnace slag as fine aggregates may possibly be used to achieve effects on strength together with drainage effects.

  • PDF