• 제목/요약/키워드: Flexural Deformation

검색결과 400건 처리시간 0.026초

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

리브 형상을 갖는 반단면 프리캐스트 판넬의 휨 안전성 평가 연구 (Study on Safety Evaluation of the Half-Depth Precast Deck with RC Rib Pannel for the Flexural Behavior)

  • 황훈희
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.76-84
    • /
    • 2019
  • The precast pannels are used as formwork in Half-depth precast deck systems. Therefore, it has many advantages, including safe and convenient construction and reduced construction period compared to cast-in-place construction method. In half-depth precast deck systems, the bonding of precast pannels to cast-in place concrete is very important. To enhance the performance of half-depth precast deck system, it is necessary to improve the composite efficiency of the interface or increase the stiffness of the precast pannel to reduce deformation or stress on the interface. In this study, a flexural test of half-depth precast deck system was performed, in which the shear connecting reinforcement was applied to increase the bonding performance at the interface, and the rib shape precast panels were applied to improve stiffness. In addition, the safety and serviceability of these systems were evaluated. Test results show that all of specimens have the required flexural strength under the ultimate strength limit design. It was also evaluated to have sufficient safety for the serviceability of deflection and crack under the serviceability limit design.

U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구 (Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam)

  • 오명호;김영호;김명한
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

인장철근배근량에 따른 U-플랜지 트러스 복합보의 휨 내력에 관한 실험연구 (Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam According to Reinforcement Amounts)

  • 오명호;박성진;김영호
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.33-40
    • /
    • 2021
  • For the practical application of U-flanged Truss Hybrid beams, the flexural capacity of hybrid beams with end reinforcement details using vertical steel plates was verified. The bending test of U-flanged Truss Hybrid beams was performed using the same top chord under the compressive force, but with the thickness of the bottom plate and the amount of tensile reinforcement. The initial stiffness and maximum load of the specimen with tensile reinforcement have a higher value than that of the specimen without tension reinforcement, but the more tensile reinforcement, the greater the load decrease after the maximum load. In the case of the specimen with tensile reinforcement, because the test result value is 76% to 88% when compared with the flexural strength according to Korea Design Code, the safety of the U-flanged Truss Hybrid beam with the same details of the specimens can't ensure. Therefore, the development of new details is required to ensure that the bottom steel plate and the tensile reinforcement can undergo sufficient tensile deformation.

이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석 (Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections)

  • 황진우;백성용
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.614-621
    • /
    • 2019
  • 이축 및 일축대칭 단면의 적층복합 보의 휨 해석과 좌굴해석을 위해 일반화된 보 요소를 제안하였다. 전단변형보 이론을 사용하여 유도된 보 요소는 휨 전단변형 및 휨 비틀림과 재료 비등방성 성질에 따른 연계성을 고려하였다. 서로 다른 단면에 대해 해석적 기법으로 구한 단면 강성계수와 함께 평면응력과 평면변형률 가정을 사용하였다. 대칭 및 역대칭 적층복합 보의 휨 거동을 조사하기 위해 뒴 변형을 포함하여 절점 당 7개의 자유도를 가진 두 가지 유형의 3절점, 4절점 보 요소를 제안하였다. 전단잠금 현상을 완화하기 위해 본 연구에서는 감차적분 기법을 사용하였다. 또한, 유도된 기하학적 블록강성을 사용하여 축방향 압축력을 받는 적층복합 보의 좌굴하중을 산정하였다. 제시한 보 요소의 정확성과 효율성을 검증하기 위해 3절점 보 요소에 근거한 결과를 다른 연구자와 ABAQUS 유한요소 해석결과와 비교하였다. 적층복합 보의 휨 거동과 좌굴하중에 대한 연계강성과 전단변형, 경계조건, 하중형태, 길이-높이 비, 적층형태의 영향을 조사하였다. 두 개의 다른 보 요소의 수렴성도 제시하였다.

A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates

  • Boussoula, Abderrafik;Boucham, Belhadj;Bourada, Mohamed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.197-218
    • /
    • 2020
  • In this work, thermomechanical flexural analysis of functionally graded material sandwich plates with P-FGM face sheets and E-FGM and symmetric S-FGM core is performed by employing a nth-order shear deformation theory. A novel type of S-FGM sandwich plates, namely, both P-FGM face sheets and a symmetric S-FGM hard core are considered. By employing only four unknown variables, the governing equations are obtained based on the principle of virtual work and then Navier method is used to solve these equations. Analytical solutions are deduced to compute the stresses and deflections of simply supported S-FGM sandwich plates. The effects of volume fraction variation, geometrical parameters and thermal load on thermomechanical flexural behavior of the symmetric FGM sandwich plates are investigated.

Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation

  • Kwak, Hyo-Gyoung;Kim, Sun-Pil;Kim, Ji-Eun
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.357-378
    • /
    • 2004
  • Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake loading is performed in this paper on the basis of a hysteretic moment-curvature relation. Unlike previous analytical moment-curvature relations which take into account the flexural deformation only with the perfect-bond assumption, by introducing an equivalent flexural stiffness, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end, which accounts for more than 50% of the total deformation. The advantage of the proposed relation, compared with both the layered section approach and the multi-component model, may be the ease of its application to a complex structure composed of many elements and on the reduction in calculation time and memory space. Describing the structural response more exactly becomes possible through the use of curved unloading and reloading branches inferred from the stress-strain relation of steel and consideration of the pinching effect caused by axial force. Finally, the applicability of the proposed model to the nonlinear dynamic analysis of RC structures is established through correlation studies between analytical and experimental results.

폴리머 콘크리트 샌드위치 패널의 휨에 관한 실험적 연구 (An Experimental Study on the Flexural Deflection of Sandwich Panels with Polymer Concrete Facings)

  • 함형길;이석건;연규석;이현우;이종원
    • 한국농공학회지
    • /
    • 제39권1호
    • /
    • pp.54-63
    • /
    • 1997
  • The purpose of this study is to analyse deformation properties by carrying out of flexure experimentations after fabricating polymer concrete sandwich panels which are composed of the polymer concrete in facing and expanded polystyren in cores, and to provide the basic data necessary to design, fabricate and operate the structure using these polymer concrete sandwich panels The analysed result of this study is summarized as follows. 1. The result of experiment on flexural deflection indicated that the thicker the thickness of both cores and facing of the polymer concrete sandwich panels, the smaller the deflection but the larger the ultimate shear force. In addition, it was also shown that the thicker the thickness of these cores and facing, the smaller the increasing rate of the deflection with the increase of load. 2. The breaking shape of polymer concrete sandwich panels by experiment on flexure was different according to the thickness of facing. When the facing was 5mm in thickness, it was the flexure while it was the flexure and shear failure when the facing was 5mm in thickness. As a result, it seems that the thickness of the facing has a great effect on failure. 3. There were induced not only the related formula between load, deflection and deformation according to the thickness of cores and facing on the basis of the flexure experiment, but also formula between load, horizontal displacement, Then, it seems that it will be possible to estimate the above elements by using these related formulas.

  • PDF

Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load

  • Singh, V.P.;Dwivedi, J.P.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.39-51
    • /
    • 1999
  • The dynamic response of buried pipelines has gained considerable importance because these pipelines perform vital role in conducting energy, water, communication and transportation. After realizing the magnitude of damage, and hence, the human uncomfort and the economical losses, researchers have paid sincere attention to this problem. A number of papers have appeared in the past which discuss the different aspects of the problem. This paper presents a theoretical analysis of non-axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear deformation has been used. A perfect bond between the shell and the surrounding medium has been assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic parameters over a long range. Under these conditions the shell response is studied in axisymmetric mode as well as in the flexural mode. It is observed that the shell response is significantly affected by change in orthotropic parameters and also due to change of response mode. It is observed that axial deformation is large in axisymmetric mode as compared to that in flexural mode.