• 제목/요약/키워드: Flexural Deformation

검색결과 400건 처리시간 0.025초

RC보의 전단변형 특성에 관한 연구 (A Study on Shear Deformation Characteristics of RC Beams)

  • 김민중;정길상;김대중;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.273-276
    • /
    • 2006
  • This paper presents shear deformation characteristics in reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. Transverse elongation of the web and deflections are calculated from shear compatibility condition in a beam and compared with test results.

  • PDF

고강도 콘크리트를 사용한 R/C 전단벽의 강도와 변형능력 (Strength and Deformation Capacity of R/C Shear Walls Using High Strength Concrete under Cyclic loads)

  • 오영훈;윤형도;최창식;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.72-77
    • /
    • 1990
  • Results are presented of the cyclic loading tests of there low-rise shear wall assembligies using high strength concrete. The possibilities of achieving an acceptable level of energy dissipation in one story shear walls, mainly by flexural yielding, are examined. Mechanisms of flexural and shear resistance are reviewed with emphasis on aspects of sliding shear. Detrimental effects of sliding shear are demonstrated together with improvement achieved by use of diagonal wall reinforcements. It is postulated that with suitably arranged diagonal wall reinforcements a predominantly flexural response mode with good energy dissipation characteristics can be achieved in low-rise shear walls.

  • PDF

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Flexural behavior of UHPC-RC composite beam

  • Wu, Xiangguo;Lin, Yang
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.387-398
    • /
    • 2016
  • In order to evaluate the effects of U shape ultra high performance concrete (UHPC) permanent form on the behaviors of Reinforced Concrete (RC) beam, a full scale RC composite beam is designed and tested with U shape UHPC permanent form and a reference RC beam with same parameters is tested simultaneously for comparison. The effects of the permanent form on the failure mode, cracking strength, ultimate capacity and deformation are studied. Test results shows that the contributions of the U shape UHPC permanent form to the flexural cracking behaviors of RC beam are significant. This study may provide a reference for the design of sustainable RC beam with high durable UHPC permanent form.

섬유보강 투수 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of Fiber Reinforced Permeability Concrete)

  • 이봉춘;조청휘;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.665-670
    • /
    • 2000
  • In this study mechanical properties of various fiber reinforced permeability concrete mixtures are investigated. Several mixes with fiber kinds(steel fiber, polyprophylen fiber, carbon fiber) and different fiber content(steel fiber : 0.3~0.9vol.%, polyprophylen fiber : 0.1~0.5vol.%, carbon fiber : 0.2~0.7vol.%) were studied. Test results are presented in terms of compressive strength, tensile-flexural strength and load-deflection behavior. The effect of fiber reinforcement does not increase the compressive strength of permeability concrete without fiber. Also, the tensile-flexural strength using various fibers are appeared good strength increase as conventional fiber reinforced concrete. Therefore, use of fiber for permeability concrete is necessary to improve of tensile-flexural properties and deformation performance(toughness).

  • PDF

철근 콘크리트 연결보의 전단 저항 기구와 변형 능력 (The Mechanism of Shear Resistance and Deformability of Reinforced Concrete Coupling Beams)

  • 장상기;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.50-53
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

고강도 철근콘크리트 기둥의 구성모델 (Constitutive Modeling of Confined High Strength Concrete)

  • Kyoung Oh, Van;Hyun Do, Yun;Soo Young, Chung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.445-450
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis to assess the ductility available from high-strength columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratio and strength of rectangular ties, etc. So a stress-strain confinement model is developed which can simulate a complete inelastic moment-curvature relations of a high-strength reinforced concrete column

  • PDF

보강된 단순지지 철근 콘크리트 슬래브의 구조 성능 (Structural Performance of Strengthened Reinforced Concrete Slabs with Simple Supports)

  • 신영수;이차돈;홍기섭;최완철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.89-96
    • /
    • 1997
  • The paper presents the results of experimental studies on two strengthening methods for reinforced concrete (RC) slabs. Bending tests on RC slabs have been carried out to investigate the influence of the increased thickness and externally bonded carbon fiber sheets. The interfaces of new and old concrete of increased thickness specimens have been chipped and treated with bonding agent. The conclusions have been reached as followings. (1) The behavior of specimens with chipped interface is good enough to calculate flexural strength of RC slabs for increased depth. (2) The flexural stiffness of increased depth specimen is severely increased and the deformation of RC slabs is controled. (3) The specimens with externally bonded carbon fiber sheets can be assumed to behave monolithically.

  • PDF