• 제목/요약/키워드: Flexible transparent electrodes

검색결과 74건 처리시간 0.035초

플렉서블 일렉트로닉스용 투명합성전극 기술 동향 (Transparent Composite Electrodes Technology for Flexible Electronics)

  • 조경익;구재본;추혜용
    • 전자통신동향분석
    • /
    • 제28권5호
    • /
    • pp.34-42
    • /
    • 2013
  • 대면적 태양전지와 디스플레이용 투명전극으로 지금까지는 투명전도성산화물(TCO: Transparent Conductive Oxide)이 일반적으로 사용되어 왔지만, 성능이 향상된 새로운 소자가 등장함에 따라 현재보다 우수한 광학 특성을 가지면서 낮은 전기저항을 갖는 새로운 투명전극을 개발하기 위한 관심이 집중되고 있다. 다양한 종류의 차세대 투명전극 기술 중 현재 응용 가능성이 가장 높은 투명합성전극(TCE: Transparent Composite Electrode, TCO/금속/TCO 구조) 기술은 단일 층 TCO를 사용하는 것보다 우수한 전기 광학적 특성을 보여주고, 더구나 플라스틱 기판 위에 저온에서도 공정이 가능하기 때문에 새로운 투명전극 기술로 부상하게 되었다. 본고에서는 투명합성전극 기술에 대해 소재의 선택, 전기 광학적 특성, 기계적 열적 습도 안정성과 소자 응용 관련 주요 현황에 대해 살펴보고자 한다.

  • PDF

Effect of Au-ionic Doping Treatment on SWNT Flexible Transparent Conducting Films

  • 민형섭;정명선;최원국;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • Interest in flexible transparent conducting films (TCFs) has been growing recently mainly due to the demand for electrodes incorporated in flexible or wearable displays in the future. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effect of Au-ion treatment on the electronic structure change of SWNT films was investigated by Raman and XPS.

  • PDF

레이저 기반 플라즈모닉 어닐링을 통한 은 나노입자 자가 생성 및 소결 공정과 이를 활용한 메탈메쉬 전극 기반 투명 웨어러블 히터 (Ag Nanoparticle Self-Generation and Agglomeration via Laser-Induced Plasmonic Annealing for Metal Mesh-Based Transparent Wearable Heater)

  • 황윤식;남의연;김연욱;우유미;허재찬;박정환
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.439-444
    • /
    • 2022
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) is a promising technology to fabricate flexible conducting electrodes, since it provides instantaneous, simple, and scalable manufacturing strategies without requiring costly facilities and complex processes. However, the metal NPs are quite expensive because complicated synthesis procedures are needed to achieve long-term reliability with regard to chemical deterioration and NP aggregation. Herein, we report laser-induced Ag NP self-generation and sequential sintering process based on low-cost Ag organometallic material for demonstrating high-quality microelectrodes. Upon the irradiation of laser with 532 nm wavelength, pre-baked Ag organometallic film coated on a transparent polyimide substrate was transformed into a high-performance Ag conductor (resistivity of 2.2 × 10-4 Ω·cm). To verify the practical usefulness of the technology, we successfully demonstrated a wearable transparent heater by using Ag-mesh transparent electrodes, which exhibited a high transmittance of 80% and low sheet resistance of 7 Ω/square.

Buffer and Anode Combined Ta Doped In2O2 Electrodes Prepared by Co-sputtering for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Noh, Yong-Jin;Na, Seok-In;Park, Hyun-Woo;Chung, Kwun-Bum;Kima, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.168.1-168.1
    • /
    • 2014
  • We developed poly (3,4-ethylene dioxylene thiophene):poly (styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs) using buffer and anode combined Ta doped $In_2O_3$ (ITaO) electrodes. To optimize the ITaO electrodes, we investigated the effect of $Ta_2O_5$ doping power on the electrical, optical, and structural properties of the co-sputtered ITaO films. The optimized ITaO film doped with 20 W $Ta_2O_5$ radio frequency power showed sheet resistance of 17.11 Ohm/square, a transmittance of 93.45%, and a work function of 4.9 eV, all of which are comparable to the value of conventional ITO electrodes. The conventional bulk heterojunction OSC with ITaO anode showed a power conversion efficiency (PCE) of 3.348% similar to the OSCs (3.541%) with an ITO anode. In addition, OSCs fabricated on an ITaO electrode successfully operated without an acidic PEDOT:PSS buffer layer and showed a PCE of 2.634%, which was much higher than the comparable no buffer OSC with an ITO anode. Therefore, co-sputtered ITaO electrodes simultaneously acting as a buffer and an anode layer can be considered promising transparent electrodes for cost-efficient and reliable OSCs because they can eliminate the use of an acidic PEDOT:PSS buffer layer.

  • PDF

금속층 두께에 따른 ITO/Ag/ITO 다층 투명 전극의 발열 특성 연구 (A Study on the Exothermic Properties of ITO/Ag/ITO Multilayer Transparent Electrode Depending on Metal Layer Thickness)

  • 민혜진;강예지나;손혜원;신소현;황민호;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.37-43
    • /
    • 2022
  • In this study, we investigated the optical, electrical and exothermic characteristics of ITO/Ag/ITO multilayer structures prepared with various Ag thicknesses on quartz and PI substrates. The transparent conducting properties of the ITO/Ag/ITO multilayer films depended on the thickness of the mid-layer metal film. The ITO/Ag (14 nm)/ITO showed the highest Haccke's figure of merit (FOM) of approximately 19.3×10-3 Ω-1. In addition, the exothermic property depended on the substrate. For an applied voltage of 3.7 V, the ITO/Ag (14 nm)/ITO multilayers on quartz and PI substrates were heated up to 110℃ and 200℃, respectively. The bending tests demonstrated a comparable flexibility of the ITO/Ag/IT multilayer to other transparent electrodes, indicating the potential of ITO/Ag/ITO multilayer as a flexible transparent conducting heater.

플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers)

  • 김지훈;추영배;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

전기방사법으로 제조된 Ag 나노섬유의 투명전극 특성 (Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes)

  • 현재영;최정미;박윤선;강지훈;석중현
    • 한국진공학회지
    • /
    • 제22권3호
    • /
    • pp.156-161
    • /
    • 2013
  • 연속적인 1차원의 나노섬유를 제작하는데 빠르고 효과적인 방법인 전기방사법을 이용하여 Ag 나노섬유로 이루어진 투명전극을 제작하고 그 특성을 측정하였다. 전기방사를 통해 제조된 Ag 나노섬유는 큰 종횡비를 갖게 되며 열처리를 통해 생성된 섬유사이의 fused junction이 접촉저항을 낮추어 전기적 특성을 향상시킨다. Ag/고분자 용액을 졸-겔 방법을 이용하여 제조한 후 glass 기판위에 방사시켜 Ag/고분자 나노섬유 구조체를 제작하고 $200{\sim}500^{\circ}C$, 2시간 열처리하여 고분자가 일정부분 제거되고 전도성이 향상된 Ag 나노섬유 투명전극을 제조하였다. Ag 나노섬유의 모폴로지를 FE-SEM을 통해 확인하였고 Ag 나노섬유 투명전극의 투과도와 면저항을 UV-vis-NIR spectroscopy와 I-V특성 측정장치를 사용하여 측정하였다. 투과도 83%에서 면저항 $250{\Omega}/sq$의 투명전극을 제작하였으며 전도성필름에 적합한 수준이다. Ag 나노섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 차세대 유연 디스플레이에 적용 가능성을 보여준다.

Ag thickness effect on electrical and optical properties of flexible IZTO/Ag/IZTO multilayer anode grown on PET

  • 남호준;조성우;김한기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.379-379
    • /
    • 2007
  • The characteristics of indium-zinc-tin-oxide (IZTO)-Ag-IZTO multilayer grown on a PET substrate were investigated for flexible organic light-emitting diodes. The IZTO-Ag-IZTO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 4 ohm/sq and a high transmittance of 84%, despite the very thin thickness of the IZTO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (14 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  • PDF

기판 열처리가 롤투롤 스퍼터를 이용하여 성장시킨 터치 패널용 유연 ITO 투명 전극의 특성에 미치는 효과 연구 (Effect of Substrate Preheating on the Characteristics of Flexible and Transparent ITO Electrodes Grown by Roll-to-Roll Sputtering for Touch Panel Applications)

  • 김동주;이원영;김봉석;김한기
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.327-332
    • /
    • 2010
  • We report on the effect of PET substrate preheating on the characteristics of the flexible and transparent indium tin oxide (ITO) electrode grown by a specially designed roll-to-roll sputtering system for touch panel applications. It was found that electrical and optical properties of the roll-to-roll sputter grown ITO film were critically dependent on the preheating of the PET substrate. In addition, the roll-to-roll sputter-grown ITO film after post annealing test at $140^{\circ}C$ for 90 min showed stable electrical and optical properties. The low sheet resistance and high optical transmittance of the ITO film grown on the preheated PET substrate demonstrate that the preheating process before ITO sputtering is one of the effective way to improve the characteristics of ITO/PET film. Furthermore, the superior flexibility of the ITO electrode grown on the preheated PET substrate indicates that the preheating treatment is a promising technique to obtain robust ITO/PET sample for touch panel applications.

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • 김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF