• Title/Summary/Keyword: Flexible substrates

Search Result 379, Processing Time 0.029 seconds

High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics

  • Jo, Jeong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.69.3-69.3
    • /
    • 2012
  • A high-performance low-voltage graphene field-effect transistor (FED array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 and 91 $cm^2/Vs$, respectively, at a drain bias of - I V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.

  • PDF

Printed black internal conducting electrodes for flexible bistable cholesteric displays

  • Atkuri, H.M.;Lee, D.W.;Choi, B.O.;Kim, C.H.;West, J.L.
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.97-99
    • /
    • 2011
  • We report flexible, bistable cholesteric displays utilizing polyester (PET) substrates with printed internal black electrodes. The black electrodes consist of carbon ink dispersed in butyl carbitol using a patented roll-to-roll gravure-offset printing. A transparent conducting polymer printed on PET serves as the counter electrode. The electro-optic material is a chiral nematic mixture dispersed in a low-concentration polymer binder. The device can be switched between scattering (black) and reflective (vibrant green) states upon application of an electric pulse. The internal black electrode enhances the contrast of the display and simplifies the roll-to-roll manufacture of flexible displays.

Improvement of Transparent Electrodes Based on Carbon Nanotubes Via Corona Treatment on Substrate Surface (기판의 코로나 표면처리에 의한 탄소 나노튜브 투명전극의 물성 향상)

  • Han, Sang-Hoon;Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, we investigate the effects of corona-discharge pre-treatment on the properties of carbon nanotubes (CNTs) which are used as flexible transparent electrodes. The CNTs are deposited on PET (polyethylene terephthalate) substrates using a spray coating method. Prior to the deposition of CNTs, the PET substrates are corona-treated by varying the feeding directions of the PET substrate and the numbers of treatments. The variations in the surface morphologies and roughnesses of the PET substrates due to corona-treatment are characterized via atomic force microscopy (AFM). Dynamic contact angles (DCAs) of the corona-treated PET substrates are measured and analyzed as functions of the treatment conditions. Also, the sheet resistances and visible-range transmittances of the CNTs deposited on PET substrates are measured before and after bending test. The experimental results obtained in this study provide strong evidences that the adhesive forces between CNTs and PET substrates can be substantially enhanced by corona-discharge pretreatment.

Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method (연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석)

  • Chung, Kook Chae;Kim, Young Kuk;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.

Development of $Binem^{(R)}$ Displays on Flexible Plastic Substrates

  • Barron, Cecile;Angele, Jacques;Bajic, Lorenzo;Dozov, Ivan;Leblanc, Francois;Perny, Sebastien;Specht, Jorg;Brill, Jochen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.289-292
    • /
    • 2004
  • We have successfully fabricated $Binem^{(R)}$ displays on thin flexible plastic substrates. The fabrication is based on the standard $Binem^{(R)}$ process for glass which has been adapted to plastic with new materials and technologies. The first application is targeted to an embedded display for smart card products.

  • PDF

Silicon Thin-Film Transistors on Flexible Polymer Foil Substrates

  • Cheng, I-Chun;Chen, Jian Z.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1455-1458
    • /
    • 2008
  • Amorphous silicon (a-Si:H) thin-film transistors (TFTs) are fabricated on flexible organic polymer foil substrates. As-fabricated performance, electrical bias-stability at elevated temperatures, electrical response under mechanical flexing, and prolonged mechanical stability of the TFTs are studied. TFTs made on plastic at ultra low process temperatures of $150^{\circ}C$ show initial electrical performance like TFTs made on glass but large gate-bias stress instability. An abnormal saturation of the instability against operation temperature is observed.

  • PDF

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

Flexible OLEDs: Challenges, Opportunities, and Current Status

  • Hack, Michael;Ma, Rui-Qing;Brown, Julie J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.211-214
    • /
    • 2009
  • In this paper we will outline the opportunities for flexible OLED devices, both for display and solid-state lighting applications. We will present our recent data, and discuss future challenges, for low power consumption phosphorescent OLED technology fabricated on flexible substrates to enable a new generation of energy efficient electronic devices.

  • PDF

Full Color Top Emission AMOLED Displays on Flexible Metal Foil

  • Hack, Michael;Hewitt, Richard;Urbanik, Ken;Chwang, Anna;Brown, Julie J.;Lu, Jeng Ping;Shih, Chinwen;Ho, Jackson;Street, Bob;Ramos, Teresa;Rutherford, Nicole;Tognoni, Keith;Anderson, Bob;Huffman, Dave
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. For portable applications flexible (or conformable) and rugged displays will be the future. In this paper we outline our progress towards developing such a low power consumption active-matrix flexible OLED $(FOLED^{TM})$ display. We demonstrate full color 100 ppi QVGA active matrix OLED displays on flexible stainless steel substrates. Our work in this area is focused on integrating three critical enabling technologies. The first technology component is based on UDC's high efficiency long-lived phosphorescent OLED $(PHOLED^{TM})$ device technology, which has now been commercially demonstrated as meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active-matrix backplanes, and for this our team are employing PARC's Excimer Laser Annealed (ELA) poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing, and in this device we employ a multilayer thin film Barix encapsulation technology in collaboration with Vitex systems. Drive electronics and mechanical packaging are provided by L3 Displays.

  • PDF

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF