• Title/Summary/Keyword: Flexible rotating beam

Search Result 24, Processing Time 0.02 seconds

Experimental Verification of Flexible Multibody Dynamic Simulations for A Rotating Beam (회전 외팔보에 대한 유연 다물체 동역학 시뮬레이션의 실험적 검증)

  • Kim, Seong-Su;Gang, Yeon-Jun;Lee, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.267-274
    • /
    • 2002
  • Using a flexible rotating beam test bed, experimental verification of a flexible multibody dynamic simulations for a rotating beam model has been carried out. The test bed consists of a flexible arm, harmonic driver reducer, AC servo motor and DSP board with PC. The mechanical ports of the test bed has been designed using 3D CAD program. For the simulation model, mass and moment of inertia of each part of the flexible rotating beam test bed are also obtained from 3D CAD model. In the flexible multibody dynamic simulations, the substructuring model has been established to capture nonlinear effects of the flexible rotating beam. Through the experimental verification, substructuring model provides better results than those from the linear model in the high speed rotation.

Straight-line Path Error Reduction for the End of a Flexible Beam Deploying from a Rotating Rigid Hub (회전하는 강체허브에서 전개하는 보 끝단의 직선궤적오차 저감)

  • Kim, Byeongjin;Kim, Hyungrae;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.898-906
    • /
    • 2014
  • This paper presents a reduction method for a straight-line path error of a flexible beam deploying from a rotating rigid hub. Previous studies discussed about only vibration phenomena of flexible beams deploying from rotating hubs; however, this study investigates a vibration reduction of a rotating beam with variable length. The equation of motion and associated boundary conditions are derived for a flexible beam deploying from a rotating rigid hub, and then they are transformed to a variational equation. By applying the Galerkin method, the discretized equations are obtained from the variational equation. Based on the discretized equations, the dynamic responses of a rotating/deploying beam are analyzed when the beam end has a straight line motion. A reduction method for the trajectory error is proposed, using the average length of a rotating/deploying beam. It is shown that the proposed method is able to reduce the residual vibration of a rotating/deploying beam.

Developement of A Flexible Rotating Beam Test Bed for Experimental Varification (회전 유연 외팔보 진동 시뮬레이션 검증을 위한 테스트 베드 구축)

  • Kang, Youn-Jun;Kim, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.534-539
    • /
    • 2000
  • A flexible rotating beam test bed has been developed for experimental verification of flexible rotating beam dynamics and vibration. It consists of a flexible arm, harmonic driver reducer, ac servo motor and DSP board with PC. To capture the motion induced stiffening effects of the flexible rotating beam, substructuring model has been established in multibody dynamics simulation. Substructuring model provides better results comparing with experimental data.

  • PDF

Dynamics of a rotating beam with flexible root and flexible hub

  • Al-Qaisia, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.427-444
    • /
    • 2008
  • A mathematical model for the nonlinear dynamics of a rotating beam with flexible root attached to a rotating hub with elastic foundation is developed. The model is developed based on the large planar and flexural deformation theory and the potential energy method to account for axial shortening due to bending deformation. In addition the exact nonlinear curvature is used in the system potential energy. The Lagrangian dynamics and the assumed mode method is used to derive the nonlinear coupled equations of motion hub rotation, beam tip deflection and hub horizontal and vertical displacements. The derived nonlinear model is simulated numerically and the results are presented and discussed for the effect of root flexibility, hub stiffness, torque type, torque period and excitation frequency and amplitude on the dynamic behavior of the rotating beam-hub and on its stability.

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

Position control of two link flexible manipulator using Timoshenko beam model (Timoshenko beam 모델을 이용한 두개의 링크를 갖는 유연성 매니퓰레이터의 위치 제어)

  • 김기환;강경운;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.382-387
    • /
    • 1990
  • In this paper, the dynamic modeling and tip position of rotating Timoshenko beam analyzed by means of FEM (finite element method) and Hyperstability MRAC(model referenced adaptive control) technique of each other. The governing equations of the rotating beams are drived from Hamilton's principle. The dynamic model of this multi-link is drived by Lagrange approach. The shear deformation and rotary inertia are incorporated into a finite element model for determining the bending frequencies of the rotating beam. Simulation results for uniform cantilever beams by using the MRAC are compared with the available results. It will be shown that the proposed method offers an accurate and effective one to solve the free vibration problems of rotating beams' stability.

  • PDF

Modal Analysis for the Rotating Cantilever Beam with a Tip Mass Considering the Geometric Nonlinearity (기하학적 비선형성을 고려한 종단 질량을 갖는 회전하는 외팔보의 모달 분석)

  • Kim, Hyoungrae;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.281-289
    • /
    • 2016
  • In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the present model. The nonlinear equations of motion and the associated boundary conditions which include the inertia of the tip-mass are derived through Hamilton's principle. In order to investigate modal characteristics of the present model, the linearized equations of motion in the neighborhood of the equilibrium position are obtained by using perturbation technique to the nonlinear equations. Since the effect of the tip-mass is considered to the boundary condition of the flexible beam, weak forms are used to discretize the linearized equations. Compared with equations related to stiffening effect due to centrifugal force of the present and the previous model, the present model predicts the dynamic characteristic more precisely than the another model. As a result, the difference of natural frequencies loci between two models become larger as the rotating speed increases. In addition, we observed that the mode veering phenomenon occurs at the certain rotating speed.

Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft (복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF

Stability of Rotating Cantilever Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석)

  • Kim, Dong-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF