• Title/Summary/Keyword: Flexible retaining wall

Search Result 22, Processing Time 0.032 seconds

Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof

  • Liu, X.S.;Ning, J.G.;Tan, Y.L.;Xu, Q.;Fan, D.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1173-1182
    • /
    • 2018
  • The coal wall, gob-side backfill, and gangues in goaf, constitute the support system for Gob-side entry retaining (GER) in coal mines. Reasonably allocating and utilizing their bearing capacities are key scientific and technical issues for the safety and economic benefits of the GER technology. At first, a mechanical model of GER was established and a governing equation for coordinated bearing of the coal-backfill-gangue support system was derived to reveal the coordinated bearing mechanism. Then, considering the bearing characteristics of the coal wall, gob-side backfill and gangues in goaf, their quantitative design methods were proposed, respectively. Next, taking the No. 2201 haulage roadway serving the No. 7 coal seam in Jiangjiawan Mine, China, as an example, the design calculations showed that the strains of both the coal wall and gob-side backfill were larger than their allowable strains and the rotational angle of the lateral main roof was larger than its allowable rotational angle. Finally, flexible-rigid composite supporting technology and roof cutting technology were designed and used. In situ investigations showed that the deformation and failure of surrounding rocks were well controlled and both the coal wall and gob-side backfill remained stable. Taking the coal wall, gob-side backfill and gangues in goaf as a whole system, this research takes full consideration of their bearing properties and provides a quantitative basis for design of the support system.

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(I) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(I))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.308-319
    • /
    • 2009
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces two examples of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. And the sections of two examples are 50 meters apart in one construction site, they have almost similar design and construction conditions. The characteristics of ground deformation and strut axial force change were analysed, the similarity and difference between measurement results of tow examples were compared and investigated. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test (진동대 실험을 이용한 게비온-식생토낭 옹벽 시스템의 동적주동토압 산정)

  • Kim, Da Been;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.15-26
    • /
    • 2019
  • This study was conducted to characterize shearing strength of geotextile bag, connecting materials and gabion. A largescale shaking take tests were conducted to assess kinetic characteristics of gabion-geotextile bag retaining wall. Based on the results of large-scale shaking table test, dynamic characteristics of gabion-geotextile bag retaining wall structure against acceleration, displacement, and earth pressure were also analyzed. The increments of dynamic active earth pressure were determined to be (0.376-0.377)H at 1:0.3 slope and $(0.154-0.44)g_n$ earthquake acceleration, and (0.389-0.393)H at 1:1 slope, suggesting that the increments tend to rise as the slope decreases.

Case Study of the Characteristic of Ground Deformation and the Strut Axial Force Change in Long Span Deep Excavation (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.171-186
    • /
    • 2010
  • It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than in the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system or change of ground condition happen during construction process, lots of axial force can be induced in some struts, which threaten the safety of construction. This paper introduces two examples of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, which were measured in the sections of two examples that are 50 meters apart in one construction site and have almost similar design and construction conditions were analysed, the similarity and difference between measurement results of two examples were compared and investigated. This article aims to improve and develop the technique of design and construction in future projects having similar ground condition and supporting method.

The Evaluation of Pullout Resistance and Installation Damage according to the Shape of Flexible Strip Reinforcement (신장형 띠형 보강재의 형상에 따른 인발저항 및 시공성능 평가 실험 연구)

  • Jeoung, Jaehyeung;Kim, Jaehong
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.321-332
    • /
    • 2021
  • Though development of reinforced earth wall is on the rise recently, safety verification for various methods remains behind which has caused the problems including collapse after installation. This study aims to evaluate the field applicability of the shape of flexible strip reinforcement according to pullout resistance test and field damage test. The test specimens were 3 shape of reinforcement, the typical flexible band reinforcement, developed luged band reinforcement, and band type reinforcement made by cutting geogrid. It was found that reinforcement of type have strengths and weaknesses, respectively. The best type of flexible strip reinforcements can be selected, if the conditions are considered with the installation conditions of the reinforcing earth retaining wall and the particle size of the backfill materials.

A Study on the Advantage with Staged Construction Procedures and Full-Height Rigid Facing of Geosynthetic Reinforced Soil Retaining Walls (보강토옹벽에서 단계시공과 일체형 강성벽체의 이점에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Tatsuoka, Fumio
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2007
  • To construct an ideal geosynthetic reinforced soil retaining wall (GRS-RW), the facing of the wall should be flexible enough to accommodate a large deformation of the supporting ground and to develop the large tensile force in reinforcements during wall construction as long as the stability is ensured, but should be rigid enough to be stiff and stable as well as durable and aesthetically acceptable for a long life time when the wall is in service. Facing conditions during the construction and service of the wall are quite different. So it is difficult to be satisfied all these conditions with the current construction method which is mainly used in reinforced wall construction in Korea. Most of this contradiction could be solved by the staged construction procedure. According to the results of cases and references analyses, stage construction procedures make it possible to accommodate large deformation of the supporting ground and backfill without losing the stability of the wall, and to derive the tensile strength of reinforcement causing deformation of the facing. When the facing is a full-height rigid one, it also appeared almost impossible to occur a local shear failure of the active zone, and pull-out failure of reinforcements. Therefore, GRS-RWs having a full-height rigid facing have been constructed by the staged construction procedures that matched well with the theory of reinforced soil, which had outstanding stability and durability, and thus could be used for railways and bridge abutments in Korea in the future.

  • PDF

Centrifuge Model Experiments on Behavior of Reinforced Earth Retaining Walls A Study due to Variation of Reinforcements (보강토 옹벽의 거동에 대한 원심모형실험 -보강재 변화에 의한 연구)

  • Heo, Yol;Ahn, Sang-Ro;Lee, Cheo-Keun
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.45-54
    • /
    • 1993
  • In this paper, the behaviors of reinforced earth retaining walls according to material properties of reinforcement were performed through the centrifuge model tests. Skin element was used flexible aluminum plate in the process of tests. And reinforcements were used with aluminum foil strips and non -woven polyester sheets. As a result of it, model retaining wall utilizing non-woven polyester sheets than aluminum foil strips was supported at high stress level, and maximum horizontal displacement value of skin element was 0.6H height at model walls. In the other hand, coefficient relation diagram for evaluation of horizontal displacement according to skin element location was proposed using test results.

  • PDF

Stability Evaluation of Green Wall System due to Facing Rigidity (전면벽체 강성에 따른 그린월 시스템의 안정성 평가)

  • Park, Si-Sam;Kim, Hong-Taek;Kim, Seung-Wook;Kim, Yong-Eon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.9-15
    • /
    • 2006
  • The Green Wall system is one of segmental concrete crib type earth retaining wall. Green wall is constructed as procedures that lay the front stretchers, rear stretchers and headers then making a rigid body through harden filled soil of interior cell. Recently, Green Wall method is applied in variable cutting ground construction because of advantage which minimize to cut base ground. In case of Green Wall method is constructed with soil nail method, expect that total system stability will increase more than flexible facing because of facing stiffness is big. However, in this case of design, facing stiffness is not considered so that is poor economy. Hence, in this study, stability increasing effect of total system analyze about that soil nail method is constructed with rigidity facing like a Green Wall method. In present study, laboratory model tests was performed for analysis on stability increasing effect of total system about changing stiffness of facing. LEM analysis conducted for evaluation on safety factor of total system sliding that facing condition changed.

  • PDF

Numerical study for Application of H-Pile Connection Plastic Sheet Pile Retaining Wall (HCS) (H-Pile과 Plastic Sheet Pile을 결합한 토류벽체에 대한 수치해석적 연구)

  • Lee, Kyou-Nam;Lim, Hee-Dae
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.331-343
    • /
    • 2017
  • In this study to improve stability, workability and economics of the H-Pile+Earth plate or H-Pile+Earth plate+Cutoff grouting currently in use, we had developed HCS method belonging to the retaining wall which is consisting of a combination H-Pile, Plastic Sheet Pile and Steel Square Pipe for gap maintenance and reinforcement of flexible plastic Sheet Pile, and the behavior of each member composing HCS method is investigated by three-dimensional finite element analysis. To numerically analyze the behavior of the HCS method, we have performed extensive three-dimentional finite element analysis for three kinds of plastic Sheet Pile size, two kinds of H-Pile size and three kinds of H-Pile installation interval, one kinds of Steel Square Pipe and three kinds of Steel Square Pipe installation interval. After analyzing the numerical results, we found that the combinations of $P.S.P-460{\times}131.5{\times}7t$ (PS7) and H-Pile $250{\times}250{\times}9{\times}14$ (H250), $P.S.P473{\times}133.5{\times}9t$ (PS9) and H-Pile $300{\times}200{\times}9{\times}14$ (H300) is the most economical because these combinations are considered to have a stress ratio (=applied stress/allowable stress) close to that as the stiffness of H-Pile, plastic Sheet Pile and Steel Square Pipe composite increased, the horizontal displacement of the retaining wall and the vertical displacement of the upper ground decreased. Especially, due to the arching effects caused by the difference in stiffness between H-Pile and plastic Sheet Pile, a large part of the earth pressure acting on plastic Sheet Pile caused a stress transfer to H-Pile, and the stress and displacement of plastic Sheet Pile were small. Through this study, we can confirm the behavior of each member constituting the HCS method, and based on the confirmed results of this study, it can be used to apply HCS method in reasonable, stable and economical way in the future.