• 제목/요약/키워드: Flexible polymers

검색결과 118건 처리시간 0.011초

유연/신축성 전자패키징 용 폴리머 재료의 기계적 물성 측정 기술 리뷰 (Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging)

  • 김철규;이태익;김택수
    • 마이크로전자및패키징학회지
    • /
    • 제23권2호
    • /
    • pp.19-28
    • /
    • 2016
  • This paper presents an overview of selected advanced measurement technologies for the mechanical properties of polymers used for flexible and stretchable electronic packaging. Over the years, a variety of flexible and stretchable electronics have been developed due to their potential applications for next generation IT industry. To achieve more flexible and wearable devices for practical applications, the usage of polymeric components has been increased significantly. Therefore, accurate measurement of mechanical properties of the polymers is necessary in order to design mechanically reliable devices. However, the measurement has been challenging due to the soft nature and thin applications of polymers. Here, we describe novel measurement technologies of mechanical properties of polymers for flexible and stretchable electronics.

Tumbling Dynamics of Rod-like and Semi-flexible Polymers in Simple Shear and Mixed Flows

  • Lee, Joo-Sung;Kim, Ju-Min
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.807-812
    • /
    • 2009
  • In this work, we focus on the tumbling dynamics of rod-like and semi-flexible polymers in mixed flows, which vary from simple shear to pure rotation. By employing a bead-rod model, the tumbling pathways and periods are examined with a focus on the angular distribution of their orientation. Under the mixed flows, the tumbling dynamics agreed well with earlier studies and confirmed the predicted scaling laws. We found that the angular distribution deviates from that of shear flow as the flow type approaches pure rotation. Finally, we investigated the angular distribution of $\lambda$-DNA in a shear flow and found that the present numerical simulations were in quantitative agreement with the previous experimental data.

연성 지오그리드의 내구성 및 장기설계인장강도 평가 (Evaluation of Durability and Long-term Design Tensile Strength of Flexible Geogrids)

  • 조삼덕;김진만;안주환;전한용;조성호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.21-38
    • /
    • 1999
  • Engineering properties of most polymers used in geosynthetics such as geogrid can be degraded by the chemical reaction (e.g., oxidization, ultraviolet rays, hydrolysis etc.), chemical and mechanical load, microorganism, and so on. In addition, polymer can be damaged by the compaction during construction, and the characteristic of tensile strength of polymer can be changed by the long-term creep effect. In this study, engineering properties of flexible geogrids which are manufactured by weaving/knitting the high-tenacity polymers such as polyester formed in a very open, grid-like configuration, coated with any one of a number of materials (e.g., PVC, latex, etc.), are investigated. Through the analysis of test results, the durability and the long-term design tensile strength of flexible geogrids are evaluated.

  • PDF

연결기가 반 유연성 액정중합체의 물성에 미치는 영향 (Effect of Linkage Groups on the Properties of Semi-flexible Liquid Crystalline Polymers)

  • 박종률;윤두수;방문수
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.445-451
    • /
    • 2015
  • 주사슬에 메소젠기와 유연격자로써 옥타메틸렌기를 포함하고 있는 반 유연성 액정중합체가 용액 중축합반응에 의하여 합성되었다. 중합체의 메소젠기는 에스터와 케톤, 에터, 설파이드, 메틸렌, 설폰, 또는 아이소프로필리덴기들에 의해 결합된 4개의 방향족고리로 되어 있다. 본 논문에서는, 메소젠기의 가운데 연결기가 중합체의 물성에 미치는 영향에 대하여 고찰하였다. 합성된 중합체의 구조와 성질은 $^1H$-NMR, FT-IR, DSC, TGA, XRD, POM에 의하여 조사되었으며, 그 결과에 의하면, 굽은 구조의 연결기를 가지고 있는 중합체들은 낮은 열전이온도, 좁은 액정상 온도구간, 약한 액정성, 그리고 유기용매에 대한 좋은 용해성을 보여 주었고, 벌크한 연결기를 갖는 중합체들은 무정형 중합체로서 높은 유리전이온도($T_g$)를 나타내었다.

Dimerization Behavior of Cinnamate Group attached to Flexible Polymer Backbone and Its Application to Liquid Crystal Alignment

  • Sung, Shi-Joon;Cho, Ki-Yun;Hah, Hyun-Dae;Kim, Won-Sun;Jeong, Yong-Cheol;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1163-1166
    • /
    • 2004
  • Cinnamate group is well-known for the dimerization reaction by ultra-violet irradiation and cinnamate polymers are studied for photo-alignment materials. The cinnamate groups of flexible polymer are found to produce LC alignment parallel to polarization direction of ultra-violet light, which is contrary to the LC orientation on conventional cinnamate polymers. The un-reacted cinnamate groups in the flexible polymer are also found to participate in cycloadducts formation by additional thermal reaction that preserves the orientation of cycloadducts, leading to the enhancement of thermal stability of LC alignment.

  • PDF

Progress of Study on Mesogen-Jacketed Liquid Crystalline Polymers at Peking University

  • Fan, Xing-He;Chen, Xiao-Fang;Wan, Xin-Hua;Chen, Er-Qiang;Zhou, Qi-Feng
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.90-90
    • /
    • 2006
  • Mesogen-Jacketed Liquid Crystalline Polymers, MJLCPs, are polymers with mesogenic side groups directly attached to main-chains without using flexible connecting spacers and are able to form liquid crystalline structures. Later work on structure-property of the polymers revealed that the side groups are not necessarily mesogenic for the polymers to form a mesophase so long as that the side groups are directly attached to the backbones and the side groups are large enough. Because of its inherent chain stiffness and that the monomers of MJLCPs are readily polymerizable by "living" free radical polymerizations, MJLCP offered a unique handy tool for making block copolymers. In addition, MJLCP offered also new opportunities for novel functional materials.

  • PDF

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

Chain Ordering Effects in the Nematic-Isotropic Phase Transition of Polymer Melts

  • Han Soo Kim;Hyungsuk Pak;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권2호
    • /
    • pp.199-206
    • /
    • 1991
  • A statistical thermodynamic theory of thermotropic main-chain polymeric liquid crystalline melts is developed within the framework of the lattice model by a generalization of the well-known procedure of Flory and DiMarzio. According to the results of Vasilenko et al., the theory of orientational ordering in melts of polymers containing rigid and flexible segments in the main chain is taken into account. When the ordering of flexible segments in the nematic melt is correlated with that of rigid mesogenic groups, the former is assumed to be given as a function of the ordering of rigid mesogenic cores. A free energy density that includes short-range packing contributions is formulated. The properties of the liquid-crystalline transiton are investigated for various cases of the system. The results calculated in this paper show not only the order-parameter values but also the first-order phase transition phenomena that are similar to those observed experimentally for the thermotropic liquid-crystalline polymers and show the transitional entropy terms which actually increase upon orientational ordering. In the orientational ordering values, it is shown that mesogenic groups, flexible segments, and gauche energy (temperature) may be quite substantial. Finally, by using the flexibility term, we predict the highly anisotropic mesophase which was shown by Vasilenko et al.

Assembly of Biomimetic Peptoid Polymers

  • 남기태
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.10.2-10.2
    • /
    • 2011
  • The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A biomimetic approach is to explore the impact of monomer sequence on non-natural polymer structure and function. We present the aqueous self-assembly of two peptoid polymers into extremely thin two-dimensional (2D) crystalline sheets directed by periodic amphiphilicity, electrostatic recognition and aromatic interactions. Peptoids are sequence-specific, oligo-N-substituted glycine polymers designed to mimic the structure and functionality of proteins. Mixing a 1:1 ratio of two oppositely charged peptoid 36 mers of a specific sequence in aqueous solution results in the formation of giant, free-floating sheets with only 2.7 nm thickness. Direct visualization of aligned individual peptoid chains in the sheet structure was achieved using aberration-corrected transmission electron microscopy. Specific binding of a protein to ligand-functionalized sheets was also demonstrated. The synthetic flexibility and biocompatibility of peptoids provide a flexible and robust platform for integrating functionality into defined 2D nanostructures. In the later part of my talk, we describe the use of metal ions to construct two-dimensional hybrid films that have the ability to self-heal. Incubation of biomimetic peptoid polymers with specific divalent metal ions results in the spontaneous formation of uniform multilayers at the air-water interface. We anticipate that ease of synthesis and transfer of these two-dimensional materials may have many potential applications in catalysis, gas storage and sensing, optics, nanomaterial synthesis, and environmentally responsive scaffolds.

  • PDF