• Title/Summary/Keyword: Flexible multibody system dynamics

Search Result 42, Processing Time 0.02 seconds

Need for Accurate Initial Conditions to Simulate Flexible Structures in Motion

  • Woo, Nelson;Ross, Brant;West, Ryan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • Flexible structures are often important components of mechanical assemblies in motion. A flexible structure sometimes must go through assembly steps that cause it to be in a pre-stressed condition when in the starting position for operation. A virtual prototype of the assembly must also bring the model of the flexible structure into the same pre-stressed condition in order to obtain accurate simulation results. This case study is presented regarding the simulation of a constant velocity joint, with a focus on the flexible boot. The case study demonstrates that careful definition of the initial conditions of the boot and flexible body contacts yields high-fidelity simulation results.

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

Dynamic Analysis of a Vehicle with Suspension Superelement Technique (서스팬션 슈우퍼엘리먼트 기법을 이용한 자동차의 동력학적 해석)

  • 정창모;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.450-456
    • /
    • 1988
  • Dynamic analysis of a vehicle is carried out with rigid body and flexible body models. The chassis of the vehicle is treated as flexible body in the flexible body model, and vibration normal modes are considered to account for elastic deformation of the component. Using output from the modal analysis in the finite element program, input data for the dynamic analysis with flexible body is generated. To achieve the computational efficiency, SUPERELEMENT technique is used for the vehicle suspension subsisted. The computer simulation time with suspension superelement was much reduced due to the reduction of coordinates and no kinematic constraint in the system.

A Study on the Multibody Dynamics Simulation-based Dynamic Safety Analysis of Machinery for Installation and Operation of USBL in Unmanned Vessel (무인선 USBL의 설치 및 운용을 위한 기계시스템의 다물체 동역학 시뮬레이션 기반 동적 안전성 검토에 관한 연구)

  • Jaewon Oh;Hyung-Woo Kim;Jong-Su Choi;Bong-Huan Jun;Seong-Soon Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.943-951
    • /
    • 2024
  • This paper considers the simulation-based installation and operation safety analysis of installation and operation machinery of USBL as underwater equipment in operation environments. The simulation model of this mechanical system was developed using flexible multibody dynamics simulation technology. Operation and environmental conditions were applied using dynamic forces model considering ocean environments. The developed simulation model was used to evaluate operation safety through eigenvalue analysis, dynamic forces analysis, and structural analysis. As the analysis results, the operation safety was very low in extreme operation condition due to increase of dynamic loads by VIV effect. It was not a problem because safety factor had more than 2.0 in this case. However, the operation safety should be further strengthened because the USBL and LARS was installed and utilized in unmanned vessel with automatic controls. In order to improve safety by avoiding VIV frequency, we redesigned the USBL pole.

Kinematics and Dynamics Analysis of Precision stage (정밀 스테이지의 기구 동역학 해석)

  • Ju, Jae-Hwan;Yim, Hong-Jae;Jang, Si-Youl;Jung, Jae-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.677-682
    • /
    • 2007
  • Recently, a precision stage is widely used in the fields of the nano technology. In this paper, the precision stage which consists of linear motor, vision system, light source system and controller, is designed and developed for nano imprint machine. Stiffness design considering resonance frequency is important for the precision stage. A virtual machine simulation is useful for machine development the early design stage. Kinematic and dynamic simulations of XYZ stage are performed. To consider the resonance frequency and vibration effects flexible multibody dynamics are utilized with FE modeling of the structural components.

  • PDF

Effect of Bogie Frame Flexibility on Air Gap in the Maglev Vehicle with a Feedback Control System

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.97-102
    • /
    • 2011
  • In an EMS (Electromagnetic suspension)-type Maglev (Magnetically-levitated) vehicle, the flexibility of the bogie frame may affect the acceleration of the electromagnet that is input into the control system, which could lead to instability in some cases. For this reason, it is desirable to consider bogie frame flexibility in air gap simulations, for the optimization of bogie structure. The objective of this paper is to develop a flexible multibody dynamic model of 1/2 of an EMS-type Maglev vehicle that is under testing, and to compare the air gap responses obtained from the rigid and the flexible body model. The feedback control system and electromagnet models that are unique to the EMS-type maglev vehicle must be included in the model. With this model, dynamics simulations are carried out to predict the air gap responses from the two models, of the rigid and flexible model, and the air gaps are compared. Such a comparative study could be useful in the prediction of the air gap in the design stage, and in designing an air gap control system.

  • PDF

Analysis for Lifting Design of a Floating Crane with Elastic Booms (붐(Boom)의 탄성을 고려한 해상 크레인의 리프팅 설계 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.5-11
    • /
    • 2011
  • In this paper, the dynamic response analysis of a floating crane with elastic booms and a cargo is performed. The objective is to consider the effects of the elastic boom in the lifting design stage. Governing equations of the motion for the system which consists of interconnected rigid and flexible bodies are derived based on the formulation of flexible multibody system dynamics. To model the boom as a flexible body, floating reference frame and nodal coordinates are used. Coupled surge, pitch, and heave motion of the floating crane with the cargo which has 3 degree of freedom is simulated by solving the equation numerically. Finally, the effects of the elastic boom for the lifting design that the floating crane is required to lift a heavy cargo are discussed by comparing the simulation result between with the elastic boom and with the rigid one.

  • PDF

Development of an Automation Library in Multi-Body Dynamics Program for Dynamic Structural Analysis of Block Lifting Process (블록의 리프팅 동적 구조해석을 위한 다물체 동역학 프로그램의 내장형 자동화 라이브러리 개발)

  • Jung, Da-un;Cha, Ju-Hwan;Song, Chang-Yong;Lee, Chung-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, an embedded system composed of equipment setting, block importing, scenario setting and output reporting is developed in multi-body dynamics program, ADAMS, for conducting dynamic structural analysis of block lifting process. First, equipment used for block lifting process is set in the simulation environment and the shapes and functions of two lifting beams, and six block loaders are provided as the equipment. Second, the modal analysis result of the lifting block is imported from the static structural analysis system, NASTRAN. Third, the lifting scenarios, such as hoisting, waiting, trolley moving, and wire connecting, are set in the system. Finally, output results in the forms of plots, texts and tables, are reported after the dynamic structural analysis. The test examples conducted in a shipyard are applied into the developed system in various condition and scenarios. The loads at the lug points, the stress contours, and the hot spot tables of the developed system are compared with the result of the static analysis system.

Structural Analysis of a Carriage Shuttle System : A Material Supply Device for Small-Scale Machine Tools (소규모 공작기계용 소재공급장치의 이송 셔틀 시스템에 관한 구조해석)

  • Kang, Dae-Sung;Jung, Eun Ik;Kim, Kyung-Heui;Baek, Il-Cheon;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.62-68
    • /
    • 2019
  • The aim of this study was to interpret the structure and dynamics of a transfer shuttle system as a material supply device for small machine tools. The following conclusions were obtained by performing a structural interpretation of the material supply equipment with respect to workload and the dynamical interpretation of a flexible multibody carriage shuttle. When a 1,000-kg workload was applied to a fork lift, the safety factor was approximately 1.86. To conservatively assess the integrity of the structure, a 1,000-kg workload would be proper. In the case of a deflection of the fork system, the width increased with increasing time. The greatest deflection occurred at 5.5 s, which was the largest increase in the time point of the fork system.