• Title/Summary/Keyword: Flexible method

Search Result 2,801, Processing Time 0.035 seconds

A Study on Optimizing Disk Utilization of Software-Defined Storage (소프트웨어 정의 스토리지의 디스크 이용을 최적화하는 방법에 관한 연구)

  • Lee Jung Il;Choi YoonA;Park Ju Eun;Jang, Minyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • Recently, many companies are using public cloud services or building their own data center because digital transformation is expanding. The software-defined storage is a key solution for storing data on the cloud platform and its use is expanding worldwide. Software-defined storage has the advantage of being able to virtualize and use all storage resources as a single storage device and supporting flexible scale-out. On the other hand, since the size of an object is variable, an imbalance occurs in the use of the disk and may cause a failure. In this study, a method of redistributing objects by optimizing disk weights based on storage state information was proposed to solve the imbalance problem of disk use, and the experimental results were presented. As a result of the experiment, it was confirmed that the maximum utilization rate of the disk decreased by 10% from 89% to 79%. Failures can be prevented, and more data can be stored by optimizing the use of disk.

Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications (가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구)

  • Jeong-Min Lee;Sung Yong Seo;Young Soo Lim;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).

How to apply foldable display interaction to smart device (폴더블 디스플레이 인터랙션의 스마트 디바이스 적용방안에 관한 연구)

  • Noh, Ji Hye;Chung, Seung Eun;Ryoo, Han Young
    • Design Convergence Study
    • /
    • v.15 no.3
    • /
    • pp.151-169
    • /
    • 2016
  • This study intends to present the most optimal interaction in association with available functions if the foldable display is applied to smart devices. For this, I have looked into the flow of development, morphological features and the application areas of the foldable display based on review literature. I have also established five principles of interaction applicable to the foldable display through the study on the concept and characteristics of foldable display interactions and previous research cases. Next, I have conducted user surveys to find the most optimal interactions with the functions of smart devices taken into account. Prior to user surveys, I have classified foldable display interactions into 36 categories based on the five interaction principles of the foldable display. In addition, I have selected 17 major functions of regular smart devices based on relevant documents. Lastly, utilizing concrete interaction methods and functions obtained in this manner, I have conducted user surveys based on the relationship among multiple relevant factors and chosen the interaction method that acquired the highest frequency and score as the most optimal one whose detailed description has been provided as well.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Design of Face with Mask Detection System in Thermal Images Using Deep Learning (딥러닝을 이용한 열영상 기반 마스크 검출 시스템 설계)

  • Yong Joong Kim;Byung Sang Choi;Ki Seop Lee;Kyung Kwon Jung
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Wearing face masks is an effective measure to prevent COVID-19 infection. Infrared thermal image based temperature measurement and identity recognition system has been widely used in many large enterprises and universities in China, so it is totally necessary to research the face mask detection of thermal infrared imaging. Recently introduced MTCNN (Multi-task Cascaded Convolutional Networks)presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask MTCNN is an algorithm that extends MTCNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. It is easy to generalize the R-CNN to other tasks. In this paper, we proposed an infrared image detection algorithm based on R-CNN and detect heating elements which can not be distinguished by RGB images.

Stability Test of Riprap Based Flexible Revetment Method by Real-scale Hydraulic Experiment (사석기반 연성호안공법의 실규모 수리 안정성 실험)

  • Kim, Sung Jung;Kim, Myoung Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.250-250
    • /
    • 2022
  • 호안은 유수로부터 제방과 하안을 보호하는 구조물로 태풍 또는 집중호우로 인한 홍수로부터의 안정성이 확보되어야 한다. 일반적으로 호안공법은 강성호안과 연성호안으로 구분되는데 호안재료로써의 기준과 설치 및 유지상태 기준에 따라 다르게 해석되고 있는 것이 현실이다. 최근에는 호안공법의 재료의 연결성에 따라 강성호안과 연성호안을 구분짓는다고 언급되기도 한다. 본 연구에서는 친환경 석재를 사용하고 재료와 기반재의 체결을 통해 연결성을 확보하고 굴요성을 갖게 하는 연성호안공법에 대해 실규모 실험을 계획하였다. 수리 안정성 검토를 위한 실규모 실험은 안동 하천실험센터에서 수행하였다. 실험에 사용된 수로는 8°의 경사를 갖는 급경사수로에서 수행하였으며, 수로의 제원은 폭 3m, 길이 30m 의 직사각형 형태의 직선수로로 이루어져 있다. 시험체는 실규모로 제작되며 실험수로 내 2m × 10m 의 제원을 갖는 공간에 제작된 호안공을 크레인을 이용하여 실험수로에 설치하였다. 수리 안정성 실험은 실험대상유량을 단계별로 나누어 점차적으로 증가시키고, 시험체의 이탈, 파괴 등의 큰 변화가 발생(미국 재료시험학회 연결형 콘크리트 블록 시험방법, ASTM D 7277)하였을 경우 실험을 종료하도록 계획하였다. 수리량 측정항목은 유속, 수위 등이 있으며, 호안공 의 물리적 변화는 3D스캐너를 이용하여 설치 전·후 변위를 검토하였다. 총 3회에 걸쳐 실험을 수행하였으며 실험조건에 따라 일부 시험체에서 돌출 또는 침하현상이 발생하기도 하였으나 호안의 손상이나 이탈, 연성기반재의 찢어짐 등 안정정을 저해하는 호안공 시험체의 변화는 발생하지 않는 것으로 확인되었다. 실험결과 실험수로에서 발생가능한 최대유량인 4.6cms 조건에서 본 호안공법은 약 337.7N/m2 의 소류력을 확보하는 것으로 확인되었다.

  • PDF

Change in Life Satisfaction of Korean Elderly: Comparisons of 1994, 2004, 2008 National Survey Results on the Elderly Life Conditions and Welfare Need (노인 삶의 만족도 변화: 전국노인생활실태 및 복지욕구조사 3개년도(1994, 2004, 2008년) 결과비교)

  • Chung, Soondool;Lee, Sun-Hee
    • 한국노년학
    • /
    • v.31 no.4
    • /
    • pp.1229-1246
    • /
    • 2011
  • The objectives of this study were to analyze change in life satisfaction of Korean elderly, to find determinants of it in an aging society, and to suggest ways of improving their life satisfaction. Data used in this study were from 1994, 2004, 2008 national survey results on the elderly life conditions and welfare need conducted by the Korea Institute for Health Social Affairs and Keimyung University, which were collected from 1,371, 3,278, 3,009 elderly people aged 65 and over who answered regarding their life satisfaction each year. Data were analyzed by multiple regression method. The results of analysis showed that the general life satisfaction of Koreans elderly is higher than average and is decreasing year after year. Determinants of life satisfaction for Korean elderly can be divided in two factors: common factors(i.e. subjective economic and health conditions) and flexible factors(i.e. marital status, employment status, perceptions of aging). Implications for designing services and service systems for elderly families were discussed.

Unsupervised Vortex-induced Vibration Detection Using Data Synthesis (합성데이터를 이용한 비지도학습 기반 실시간 와류진동 탐지모델)

  • Sunho Lee;Sunjoong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.315-321
    • /
    • 2023
  • Long-span bridges are flexible structures with low natural frequencies and damping ratios, making them susceptible to vibrational serviceability problems. However, the current design guideline of South Korea assumes a uniform threshold of wind speed or vibrational amplitude to assess the occurrence of harmful vibrations, potentially overlooking the complex vibrational patterns observed in long-span bridges. In this study, we propose a pointwise vortex-induced vibration (VIV) detection method using a deep-learning-based signalsegmentation model. Departing from conventional supervised methods of data acquisition and manual labeling, we synthesize training data by generating sinusoidal waves with an envelope to accurately represent VIV. A Fourier synchrosqueezed transform is leveraged to extract time-frequency features, which serve as input data for training a bidirectional long short-term memory model. The effectiveness of the model trained on synthetic VIV data is demonstrated through a comparison with its counterpart trained on manually labeled real datasets from an actual cable-supported bridge.

Which is the More Important Factor for Users' Adopting the Serious Games for Health? Effectiveness or Safety (건강 기능성 게임의 확산을 위한 유통 전략 연구: 유효성과 안전성에 대한 사용자 인식을 중심으로)

  • Yong-Young Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.23-32
    • /
    • 2023
  • Interest in Serious Games for Healthcare (SGHs) that can improve health through games is increasing. Digital Therapeutics (DTx) is a treatment that must be approved for effectiveness and safety, so it should follow the traditional drug distribution method, but SGHs are wellness products that are more flexible in terms of adoption and diffusion than DTx. SGHs are effective because it can provide customized services through continuous monitoring and feedback. When SGHs are applied to cognitive impairment treatment or behavioral correction, malfunctions and side effects are minor. This study developed research model based on the Valence Framework, gathered data from 142 undergraduates, and demonstrated that only the perceived benefits have a statistically significant positive (+) effect on SGHs acceptance intentions. Based on these results, this study suggests that SGHs companies should promote benefits in accepting SGHs for general users and they need for a distribution and analytics platform strategy based on a data-driven approach.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.