• Title/Summary/Keyword: Flexible material

Search Result 1,045, Processing Time 0.032 seconds

Analytical Study on Resilient Modulus Model of Expanded Polystyrene(EPS) Geofoam as a Subgrade Material in Flexible Pavement (연성포장에서 노상재료로서 EPS지오폼의 회복탄성계수의 모델에 관한 분석적 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.61-68
    • /
    • 2012
  • The main objective of this study is to develop an analytical model for the resilient modulus of EPS geofoam when it is applied for flexible pavement as a subgrade material. This analytical model has been developed based on the results from triaxial compression tests. And this model can be used to analyze the flexible pavement structure using the finite element method by developing a program or modifying an existing program for any desired purposes. The results of this study show that the EPS geofoam as a replacement material for subgrade in flexible pavement is a feasible alternative to natural weak soils.

A Study of Application Characteristic Evaluation Research of Flexible FRP Resin on the Roof and Floor of Parking Area (연질 FRP수지의 옥상주차장바닥 적용성 평가 연구)

  • Lee, Hyung-Jun;Kim, Sung-Sik;Ahn, Sang-Ku;Cho, Ah-Hyung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.129-132
    • /
    • 2007
  • From this research the construction civil official is simple with the parking floor finishing material, it improves the durability of the parking floor it uses the flexible FRP it will be able to secure the drainage quality it is excellent and it presents the efficient application plan from the construction site. The performance appraisal only efficiency with of result floor of parking area material bay it knows, the result where also the performance appraisal portion re-with roof bottom finishing is satisfied it showed. The flexible FRP it applies the material to the building as to diminish the damage of the bottom finishing material due to the deterioration and the conduct and the external force of the building it is exposed to the external environment, secures the quality of the material from the construction site and will contribute to the stability against the bottom finishing material.

  • PDF

Investigation of flexible backlight using micro-scale optical function pattern design (미세 광학패턴기술을 이용한 Flexible Backlight에 관한 연구)

  • Han, Jeong-Min;Seo, Dae-Shik
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.70-73
    • /
    • 2014
  • We have designed high performance flexible prism light-guide plate (LGP) in 5 inch TFT-LCD for mobile applications. We adopted novel material such as methacrylate and butyl acrylate mixture, as it called KURARITY. It has good flexibility by addition of butyl acrylate. And it has also good transmissivity because methacrylate is a major compound. Then, we achieved good test result to embody high brightness and flexible BLU in case of LGP of base and upper surface with 5 inch, thickness 1.5mm adding prism construct, it is superior brightness improvement than previous flexible LGP. It shows significant improvement than previous printing form about some 5% and in this course to flexible embody actual material it succeeded prism LGP production by 5 inch injection form process.

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

Analysis of Flexible Textile Composites with Large Shear Deformation (전단 대변형을 고려한 유연직물복합재료 해석)

  • Suh, Young-Wook;Woo, Kyeong-Sik;Kang, Wang-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.734-739
    • /
    • 2008
  • In this study, the nonlinear mechanical behavior of flexible textile composites was predicted by two-step analyses: micromechanics and mesomechanics. The effective material properties for fiber tows of flexible textile composite lamina were calculated in micromechanics, which were then used to calculate the effective tensile stress-strain curve of flexible textile composites in mesomechanics. A user defined material algorithm was developed and inserted in ABAQUS to account for the geometric non-linearity due to the large rotation and shear deformation of fiber tows in mesomechanics. It was found that the stress-strain behavior of flexible textile composites exhibited significant non-linearity. The effective tensile modulus agreed well with the test result.

Ag thickness effect on electrical and optical properties of flexible IZTO/Ag/IZTO multilayer anode grown on PET

  • Nam, Ho-Jun;Cho, Sung-Woo;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.379-379
    • /
    • 2007
  • The characteristics of indium-zinc-tin-oxide (IZTO)-Ag-IZTO multilayer grown on a PET substrate were investigated for flexible organic light-emitting diodes. The IZTO-Ag-IZTO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 4 ohm/sq and a high transmittance of 84%, despite the very thin thickness of the IZTO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (14 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  • PDF

Process Modeling of Flexible Robotic Grinding

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue;Kazerounian, Kazem
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.700-705
    • /
    • 2003
  • In this paper, an extended process model is proposed for the application of flexible belt grinding equipment as utilized in robotic grinding. The analytical and experimental results corresponding to grinding force, material removal rate (MRR) and contact area in the robotic grinding shows the difference between the conventional grinding and the flexible robotic grinding. The process model representing the relationship between the material removal and the normal force acting at the contact area has been applied to robotic programming and control. The application of the developed model in blade grinding demonstrates the effectiveness of proposed process model.

  • PDF

Finite element application of an incremental endochronic model to flexible pavement materials

  • Kerh, Tienfuan;Huang, C.Y.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.817-826
    • /
    • 1998
  • A finite element model based on the incremental endochronic theory for flexible pavement materials was developed in this study. Three grid systems with eight-node cubic isoparametric elements, and different loading steps were used to perform the calculations for a specimen of circular cylinder. The uniaxial stress experimental results on an asphalt mixture at $60^{\circ}C$ in SHRP conducted by University of California at Berkeley were used to check the ability of the derived numerical model. Then, the numerical results showed isotropic response and deviatoric response on the specimen in a three dimensional manner, which provided a better understanding for a deformed flexible material under the specified loading conditions.