• Title/Summary/Keyword: Flexible joint robot

Search Result 76, Processing Time 0.027 seconds

무인 FA를 위한 플렉시블 그리퍼 설계에 관한 연구 (A Study on Design of Flexible Gripper for Unmanned FA)

  • 김현근;김기복;김태관
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we propose a new approach to design and control a smart gripper of robot system. A control method for flexible grasping a object in partially unknown environment was proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases. The first step is scanning process which two first joints were moved to mid-position of the detected range by a state-variable feedback position controller, after the scanning was finished. The contact force of fingertip was then controlled using the detection sensor of the servo controller for finger joint control. The proposed grasping planning was tested on rectangular bar.

강체를 함께 쥔 두 대 로봇의 제어를 위한 동력학적 해석과 최적화 방안 연구 (Study of Dynamic Analysis and Optimization for Control of Two Robots Simultaneously Grasping a Rigid Body Object)

  • 고진환;송문상;유범상;박상민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.507-512
    • /
    • 1997
  • This paper presents a method of finding optitnal joint torques of two robots when they hold an object simultaneously. Although the importance of the multiple cooperating robot system increases for more flcviblc ni;mufacturing automation, dynamic solutions to multi-robot system forming closcd kinematic chain is not easy to find. Newton-Eulcr approach is used for the dynamic formulation of two robots fonn~ng closcd kincmatic chains gmsping a rigid body object. The nrcthodology to optimize the joint torques to satisfy given criterta and obtain bettcr control of the system is discussed. The scheme is illustrated by an example.

  • PDF

모터 동력학식을 고려한 유연 연결 로봇의 적응 신경망 제어 (Adaptive Neural Control of Flexible-Joint Robots Considering Motor Dynamics)

  • 유성진;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1761-1762
    • /
    • 2008
  • In this paper, we propose an adaptive neural control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. The dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. Simulation results for three-link electrically driven flexible-joint (EDFJ) manipulators are provided to validate the effectiveness of the proposed control system.

  • PDF

기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발 (Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis)

  • 이건;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

입력 다듬기기법을 이용한 유연관절을 갖는 로봇의 잔류진동 제거 (Residual Vibration Control of Robot with Flexible Joints Using Input Shaping)

  • 박주이;장평훈
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3066-3074
    • /
    • 1994
  • This paper addresses the residual vibration problem of robots due to joint flexibility excited by fast accelerations, which has not been easily solved with conventional closed loop controllers. In this paper, an open loop input shaping technique, proposed by singer, has been applied to a 3 DOF robot with joint flexibility. In conjunction to the technique, a closed loop controller based on time-delay controller was also used. The results of simulations and experiments showed that the technique is quite effective for suppressing the residual vibration.

PC 인터페이스가 가능한 스카라형 로봇제어기의 개발 (Development of a PC-based SCARA robot control system)

  • 고경철;임태균;범희락;조형석;정융섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.493-496
    • /
    • 1990
  • Recently, the robot control systems are required to be more flexible and intelligent in order to execute more complex and delicate tasks. As an approach to such system, a PC-based robot control system is presented in this paper. The axis controllers are independently designed for each joint of robot manipulator and are supervised by a personal computer. Therefore, the almost system program including the control algorithm can be easily developed and modified in the PC's environment. This proposed control system was successfully applied to 4 axis SCARA-type robot and the associated S/W modules were developed. We can construct sensory robot systems by simply connecting the sensing devices to the PC and the study on this now being progressed.

  • PDF

ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어 (Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC)

  • 아브너 어시그네시온;박승규;이민욱
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1203-1211
    • /
    • 2017
  • 본 논문은 유연관절로봇의 추종성능과 정합과 비정합 외란 모두에 대한 강인성을 향상시키기 위한 강인한 제어기를 제안한다. 제안된 제어기는 백스테핑 외란관측기(DOB), 수동성기반 제어기(PBC)와 적분슬라이딩모드 제어기(ISMC)가 백스테핑기법 형태로 구성되어 있다. 백스테핑 DOB는 링크측의 비정합 외란을 고려하는데 사용되며 모터측의 기준입력을 제공하는 역할을 한다. IDA-PBC는 모터측의 추종제어를 수행하며 적분슬라이딩모드제어와 결합될 때 공칭제어기의 역할을 하며 전체 공칭제어시스템의 안정도를 보장받도록 한다. 반면에 적분슬라이딩모드제어는 정합조건을 만족시키는 모터측의 외란의 영향을 제거하는데 사용된다. 링크측의 제어기를 설계하는데 있어서는 PD타입의 임피던스제어기와 DOB가 결합됨으로써 강인한 제어특성과 함께 모터측의 기준입력에 적합한 연속적인 입력의 제공이 가능하도록 하였다.

Robust control of flexible joint manipulators

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.618-623
    • /
    • 1992
  • In this paper robotic manipulators in which the joints exhibit a certain amount of elasticity are considered. Based on a feedback linearized model, sliding mode control system is designed. In the control system design, weak joint stiffness assumption does not needed. Simulation results are presented to verify the validity of the control scheme. A robustness analysis for a feedback linearized model is also given with respect to uncertainties on the robot parameters.

  • PDF

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계 (Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs)

  • 송봉섭;이지민
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.