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Abstract

In this paper robotic manipulators in which the joints ex-
hibst a certain amount of elasticity are considered. Based
on a feedback linearized model, sliding mode control sys-
tern ts designed. In the control system design, weak joint
stiffness assumption does not needed. Stmulation results
are presented to verify the validity of the control scheme.
A robustness analysis for a feedback linearized model is
also given with respect to uncertainties on the robot pa-

rameters.

1 Introduction

Experimental results have shown that the joint elasticity
should be taken into account in both the modeling and
control of robotic manipulators if high performance is to
be achieved. The elasticity in the joints may be caused by
the harmonic drives, that are special type of gear mech-
anisms having high transmission ratio, low weight, and
small size. As a counterpart, these gear-boxes introduce
no negligible elasticity, due to their mechanical structure.

The introduction of joint flexibility in the robot mod-
eling complicates considerably the equations of motion.
In particular, the order of the related dynamics becomes
twice that of rigid robots. Moreover, the property owned
by rigid robots of being linearizable by static-state feed-
back is lost, in general. In fact experimental test, con-
firmed by simulation, show that in many cases contro!
algorithms developed for rigid robots do not work satis-

factorily in the presence of even small elasticity in the
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joints and, in particular, oscillations occur [1].

Consequently, the control laws proposed for elastic
joint robots are more complex than those valid for rigid
robots. Many control algorithms have been proposed to
solve the problem of controlling robots with elastic joints.
Previous approaches are that based on singular perturba-
tion theory [2], [3] and on the concept of integral manifold
(4], [5]. But this approach has an assumption that weak
joint stiffness. Other used approach is tilat based on feed-
back linearization by dynamic state feedback {6]. A simple
PD controller has been also proposed {7].

In this paper, sliding mode controller for flexible joint
manipulator is proposed. The proposed control system
is based on the feedback linearized model and does not
require for the exact knowledge for joint stiffness but only
the bound.

This paper is organized as follows: The mathematical
model of a single-link flexible joint manipulator and its
feedback linearized one are described in Section 2. On
the basis of the feedback linearized model, sliding mode
controller is designed in Section 3. In Section 4, simula-
tion results on regulation and trajectory tracking control
are presented. The conclusions including further study

are given in Section 5.

2 Modeling of Flexible Joint Ma-
nipulators

Experimental investigations of industrial robots with har-



monic drive transmission and other forms of gearing in-
dicate that joint flexibility contributes significantly of the
overall dynamics of the system. The dynamic equations

of the flexible joint robots are given as (8], [9]:

0, (1)

u, (2)

I

Di(a)g + Clad)d +9(a) + K(qt — gm)

D(gm) + Bmdm — K(qi — gm)

where an n-link manipulator becomes a 2n-degrees of free-

dom system:

e D, : Diagonal motor inertia matrix € R™*™.
B,, : Diagonal motor damping matrix € R**™,
K : Diagonal drive shaft stiffness matrix € R"*™,
gm : Vector of sensed motor angles € R™"*™.
q : Vector of link joint angles € R™**™,
D, : Link inertia matrix € R">™,

C(qi, i) : Centrifugal and Coriolis terms matrix €

?Rnxm.
e g(g) : Gravitational vector term & R™™™.

Matrices D,,, B,,, K are positive definite matrices. Fur-
ther, D, is symmetric, positive definite and both D; and
D,'1 are both bounded as a function of ¢;. When K tends

toward infinity, the robot is considered to have rigid joints.

2.1 Single-Link Flexible Joint Robot

Consider the single link manipulator with flexible joint
shown in Figure 1. Ignoring damping for simplicity the

equations of motion are as follows [10] :

JiG+ MgLsin(g) + K(q —¢m) = 0

®)

Jm&m - K(ql - qm) = u.

Since the nonlinearity enters into the first equation the
control input u cannot simply be chosen to cancel it as in
case of the rigid manipulator equations. In other words,
there is no obvious analogue of the inverse dynamics con-
trol for the system in this form.

In the state space, let
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T = @

T2 = 4

I3 = QGm

Ty = Gm

and write the system (3) as

I‘l = I (4)
. MgL K
I3 = — 7, sin(z;) — 7(3:1 z3) (5)
I‘s = T4 (6)
X 1
Ty = E(II - 13) + —J—u. (7)

m

The system is thus of the form

¢ = f(z) + g(z)u

with
T2 0
—Mal gin(z,) — E(z; — = 0
floy = | TR TsEm )
T4 0
f(xl — z4) 1

2.2 Feedback Linearized Model

From above system configuration, n = 4 and the neces-
sary and sufficient conditions for feedback linearization of

the system are that
rank{g, ad;(g), a,d"}(g), ad?(g)} =4
and that the set
{9, ad,(g), ad}(9)}

be involutive. Performing the indicated calculations it is

easy to check that

K
T
o o £ o
l9,2ds(g), ad}(g), ad}(g)] = Sim
o L o -K
I Iz

which has rank 4 for K > 0, J;, J,, < co. Also, since the
vector fields {g, ad(g), ad%(g)} are constant, they form an
involutive set. It follows that the system (3) is feedback

linearizable. The new coordinates



Yi = I‘I t= 1: Ty 4
are found from
< dTl,g > =0
< dTy,ads(g) > = O
< dTy,adi(g)> = 0
< dTy,ad}{g) > # O.

Carrying out the above calculations leads to the system

of equations

oT: _
61:2 -

Ty aT, T,
2 =0, =0 —2#£0,
6.’53 ’ 614 ’ 611 ;/:

Therefore, following simplest solution can be easily ob-

tained.

n=T=mn

yo =T =<dT\, f >=1x,

. K
sm(:z:l) — J—(.’El - .’E3)

MgL
ys = Ts =< dTy, f >= — =3

MgL
w:n:«mJ>:~gcmmh—T@rm)

m

The feedback linearizing control input v is found from the

condition
1
u= <d—T4,g—>(u— < dTy, f >)
as
=TIy o) v rae) @)
where
afz) = M‘ZL sin(z,) <3§ + N{;’:L cos(zy) + %)

+K(a: z3) (K+ K + MgL (z ))
—(z1 — —+ —— + ——cos .
I TN T, T Ty e

Therefore, in the coordinates y;,---,y, with the control

law (8) the system becomes

y=Ay+bv 9)
where
0100 0]
0 010 0
A= b=
0001 0
0000 1
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The above feedback linearization is actually global and
the transformed variables y,,---,ys are themselves phys-

ically meaningful because

yi = link position

y2 = link velocity

ys = link acceleration
ys = link jerk.

3 Design of a Robust Controller

When the system parameters are exactly known, pole as-
signment technique is easily applied and desired perfor-
mance can be obtained. However, uncertainties in the sys-
tem parameters, nonlinearities such as a nonlinear spring
characteristic or backlash, will reduce the achievable per-
formance from the above design. Therefore, control sys-
tem for flexible joint manipulators should be robust against
the parameter uncertainties.

Let’s assign the sliding surface as follows :

4
s =ce= Z c;€; (10)
i=1

where,
Ct = [61626364],

;>0 for1<1<3, e=1
Y1~ Yud

Y2 — Y2q

Y4 — Yaa
Yia represent the desired trajectory for y;.

! represents the transpose.

where ¢; is chosen so that s = ce is stable.

Now the control law

u = az) + B(z)v (11)

that is, (8), which ideally linearizes the system is un-
achievable in practice due to parameter uncertainty, com-
putational roundoff, unknown disturbances, etc. It is

more reasonable to assume a control law of the form

v = &(z) + Alx)v (12)

where &(z) and §(z) are estimated or computed values of



a(z) and B(z), respectively. Let’s assume the following

conditions are satisfied for a known function A(y) > 0.
® Brain < |8(7}| < Brax.
o |&— o <h(y) < oco.

Now substitute the control law (12) into {9) which results

in
. B &—a
= —v+
Y4 8 8
8 ) &— o
= v+(|Z-1)rv+ 13
(5 ; (13)
Noting that
JE - 1‘ <1 (14)
B
can always be obtained by letting ﬁ as
B = Bmax + ﬂm-’n_

2

Set the control input v as following :
3
V= Y4d— Z Ci€it1 — ngn(s)

=1

(15)
Then for the existense of sliding mode, following lemma
can be obtained.

Lemma 1 For the flexible joint system (3) and the con-
trol law (15) sliding mode ezists provided that

3
Yad — Z Ci€i41

=1

K2 (16)

1

+ —.—h(y) +n
B

where n > 0.

Proof
It is sufficient to show that s < 0. From equation (10),
(13), (15) and (14),

3
$ (Z Ci€itr + Yo — ilu)

(B

3
S8 (Zc;e,-H +rv+ |5~
ﬁ 3
—Kls|+s (E - 1) [ﬂu - che.-ﬂ — Ksgn(s)

3§

Il

1) vt %(&— a)) ~ Yua

|

] +s%(&—a) - §K|s|

=1 ﬂ
i=1

1
B

3
$ (g - 1) [ﬂw — 3 crip;

=1
A 3

SEKI - g)[iud -3 e
—nls|.

+s= (& — a)

Il

il

-5 > ]-{—%(&«a)—ngn(s)]

IA
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Lemma 2 For the flexible joint system (3) and the pro-
posed control law (15), the overall system is globally asymp-

totically stable.

Proof

From the Lemma 1, we can easily know that the sliding
function s reaches to zero in finite time. Furthermore, we
designed the sliding surface so that the system is asymp-
totically stable in the sliding mode. So, we can conclude

that the link position error €; goes to zero as t — oo.

4 Simulation Results

In order to demonstrate the effectiveness of the controller
developed in the previous section, numerical simulation
has been performed on a single-link flexible joint manip-
ulator. Numerical parameters for the manipulator are

given in Table 1.

Table 1: Parameters for the flexible joint manipulator

Parameters Symbol | Numerical Valu;
Stiffness K 100 — 200

Minimum Stiffiness | Ko, 100
Maximum Stiffness | K., 200
Inertia of Motor Im 2.0
Inertia of Link Ji 1.0
Gravity G 9.8
Link Length L 1.0
Mass of the Link M 1.0

In the Table 1, all the values has SI units.

It is assumed that the flexible joint manipulator is
initially at rest. The controller in equation (15) is dis-
continuous and it is well known that synthesis of such a
controller gives rise to chattering of trajectory about slid-
ing surface s = 0. In order to avoid the chattering phe-

nomenon, the function sgn(s) in the controller (15) has

been replaced by sat(s). The function sat(s) is defined as

follows:



1 ifs>6
sat(s) = | s/é if |s| < 6
-1 if s < -6

where § > 0.

Figs. 1~4 show the performance of the proposed con-
troller. Simulations on regulation are shown in Figure 1
and 2. These figures demonstrate that the link angle is
successfully regulated for bounded unknown stiffness un-
der gravity. By use of sat(s) function instead of sgn(s),
the control input is significantly smoothed as shown in
Figure 2.

For trajectory tracking control, simulation results are
shown in Figure 3 and 4. It is clear that the proposed
controller presents a good performance for the trajectory

tracking.

5 Conclusions

In this paper, sliding mode control system for a single-
link flexible joint manipulator is proposed. Based on the
feedback linearized system, the controller is designed. In
course of control system design, weak joint stiffness as-
sumption does not needed. From the simulation results,
it is clear that the proposed controller exhibits stable and
good performance in both regulation and trajectory track-

ing under bounded unknown system stiffness K.
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Figure 1: Position for Link angle and Motor angle: Reg-

ulation
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Figure 2: Control Input Torque: Regulation
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Figure 4: Control Input Torque: Tracking



