• Title/Summary/Keyword: Flexible interface

Search Result 321, Processing Time 0.024 seconds

Mobile ATM: A Generic and flexible network infrastructure for 3G mobile services

  • Jun Li;Roy Yates;Dipankar Raychaudhuri
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.35-45
    • /
    • 2000
  • this paper presents the concept of "mobile ATM', a proposal for third-generation (3G) mobile communication network infrastructure capable of supporting flexible evolution of radio technologies from today's cellular and data services towards future wireless multimedia services. Mobile ATM provides generic mobility management and QoS-based transport capabilities suitable for integration of multiple radio access technologies including cellular voice. wireless data, and future broadband wireless services. The architecture of a mobile ATM network is outlined in terms of the newly-defined "W-UNI" interface at the radio link and "M-UNI"and "M-UNI" interface which supports unified access for WATM and non-ATM mobile terminals through corresponding interworking functions (IWF) is explained. leading to an understanding of how different radio access technologies are supported by the same ATM-based core network infrastructure. Generic mechanisms for handoff and location management within the core mobile network are discussed. and related protocol extensions over the "W-UNI" and "M-UNI/NNI"interfaces are proposed. the issue of "crossover switch (COS)" selection in mobile ATM is considered, and a unified handoff signaling syntax which supports flexibility in COS selection is described. Typical signaling sequences for call connection and handoff using the proposed protocols are outlined. Experimental results form a proof-of-concept mobile ATM network prototype are presented in conclusion.

  • PDF

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

Development of a Data Glove for Rehabilitation Robot for Upper Extremity Paralysis (상지마비 재활훈련로봇용 데이터글로브의 개발)

  • Park, C.Y.;Moon, I.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.45-49
    • /
    • 2009
  • This paper proposes a data glove for a rehabilitation robot interface for the upper extremity paralysis. The designed data glove uses seven flexible sensors so as to measure the flexion angles of fingers and wrist. We verified the performance of the data glove using a 3D graphic interface developed. The experimental results show that the proposed data glove is feasible to sense hand motions and applicable to the robot interface.

  • PDF

Development Strategy for Customized Flexible CAD Systems Using Application Programming Interface (응용프로그램 인터페이스를 활용한 주문형 유연 CAD 시스템 개발)

  • 신정호;곽병만
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.92-99
    • /
    • 2004
  • With the advent of computers, CAD systems are widely used for various design practice. Complexity of CAD systems and difficulty of exchanging data among different CAD systems, however, do not allow efficient use as desired. In addition, to follow variety of designers' need, CAD activities should be customized. This article proposed a methodology fer developing an intelligent CAD system and the sate-of-the-art technologies described fur customizing CAD systems using API (Application Programming Interface). A basic platform is proposed and a useful application system is implemented to enable a parametric design by directly inputting numerical values on a CAD model. Based on this application, we developed a system that makes it possible to share part family data between SolidEdge and Pro/Engineer. The proposed concept on intelligent CAD systems facilitates integration of external systems such as CAE tools and promotes the use of CAD for both engineering designers and analysts.

A Study on 3D View Design of Images and Voices Integration for Effective Information Transfer (효과적 정보전달을 위한 영상정보의 3D 뷰 및 음성정보와의 융합 연구)

  • Shin, C.H.;Lee, J.S.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.35-41
    • /
    • 2010
  • In this paper, we propose a 3D view design scheme which arranges 2D information in a 3D virtual space with a flexible interface and voice information. The scheme allows the user interface of the 2D image in 3D virtual space anytime from any view point. Voice information can be easily attached. It is this simple and efficient image and voice information arrangement in 3D virtual space that improves information transfer.

Object-Oriented Graphical User Interface Model for Visualization of Ship Conceptual Design (객체지향 개념과 가시화 기법에 의한 선박 개념설계용 그래픽 사용자 인터페이스 모델)

  • Kyung-Ho Lee;Soon-Hung Han;Dong-Kon Lee;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.27-35
    • /
    • 1992
  • By the help of computer graphics and rapid development of hardwares. GUI(Graphic User Interface) represented by WYSIWYG(What You See Is What You Get) changed user interface from liguistic model(e.g : command, etc.) to spatial model(e.g : pulldown menu, scroll bar, icon, itc.). This graphical user interface model for the ship conceptual design(MBASWIN) adopted event-driven programming technique and object-oriented concepts. Different from traditional design programs, MBASWIN is separate from the design program completely and controls all design modules. This enable a designer to accomplish a flexible designs.

  • PDF

Interface Treatment Effect of High Performance Flexible Organic Thin Film Transistor (OTFT) Using PVP Gate Dielectric in Low Temperature (저온 공정 PVP게이트 절연체를 이용한 고성능 플렉서블 유기박막 트랜지스터의 계면처리 효과)

  • Yun, Ho-Jin;Baek, Kyu-Ha;Shin, Hong-Sik;Lee, Ga-Won;Lee, Hi-Deok;Do, Lee-Mi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2011
  • In this study, we fabricated the flexible pentacene TFTs with the polymer gate dielectric and contact printing method by using the silver nano particle ink as a source/drain material on plastic substrate. In this experiment, to lower the cross-linking temperature of the PVP gate dielectric, UV-Ozone treatment has been used and the process temperature is lowered to $90^{\circ}C$ and the surface is optimized by various treatment to improve device characteristics. We tried various surface treatments; $O_2$ Plasma, hexamethyl-disilazane (HMDS) and octadecyltrichlorosilane (OTS) treatment methods of gate dielectric/semiconductor interface, which reduces trap states such as -OH group and grain boundary in order to improve the OTFTs properties. The optimized OTFT shows the device performance with field effect mobility, on/off current ratio, and the sub-threshold slope were extracted as $0.63cm^2 V^{-1}s^{-1}$, $1.7{\times}10^{-6}$, and of 0.75 V/decade, respectively.

Waterborne Core-shell Pressure Sensitive Adhesive (PSA) Based on Polymeric Nano-dispersant (고분자 분산제를 이용한 Core-shell 수성 감압점착제)

  • Lee, Jin-Kyoung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • An environmentally friendly water-based pressure sensitive adhesive (PSA) was designed in an attempt to replace the solvent-based adhesive for dry lamination used in flexible food packaging films. Instead of using a low molecular weight surfactant, which may have variable material properties, a high molecular weight dispersant was used for emulsification. A polymeric nano-dispersant (PND) was synthesized using solution polymerization, and it was used as a micelle seed in the surfactant, resulting in the synthesis of a core/shell grafted acrylic adhesive. The shell and core exhibited different $T_g$ values, so that the initial adhesion strength and holding power were complemented by the film's flexibility, which is required to provide good adhesion of thin films. Results showed that the PSA designed in this study using the PND instead of traditional low molecular weight surfactant had adhesive properties applicable to the flexible packaging with appropriate tack.

Characteristics of the Adhesion Layer for the Flexible Organic Light Emitting Diodes (플렉시블 OLED 소자 제작을 위한 접합층 특성 연구)

  • Cheol-Hee Moon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.86-94
    • /
    • 2023
  • To fabricate all-solution-processed flexible Organic Light-Emitting Diodes (OLEDs), we demonstrated a bonding technology using a polyethyleneimine (PEI) as an adhesion layer between the two substrates. As the adhesion layer requires not only a high adhesion strength, but also a high current density, we have tried to find out the optimum condition which meets the two requirements at the same time by changing experimental factors such as PEI concentration, thickness of the layer and by mixing some additives into the PEI. The adhesion strength and the electrical current density were investigated by tensile tests and electron only device (EOD) experiments, respectively. The results showed that at higher PEI concentration the adhesion strength showed higher value, but the electrical current through the PEI layer decreased rapidly due to the increased PEI layer thickness. We added Sorbitol and PolyEthyleneGlycohol (PEG) into the 0.1 wt% PEI solution to enhance the adhesion and electrical properties. With the addition of the 0.5 wt% PEG into the 0.1 wt% PEI solution, the device showed an electrical current density of 900 mA/cm2 and a good adhesion characteristic also. These data demonstrated the possibility of fabricating all-solution-processed OLEDs using two-substrate bonding technology with the PEI layer as an adhesion layer.

Recent Trends in Low-Temperature Solution-Based Flexible Organic Synaptic Transistors Fabrication Processing (저온 용액 기반 유연 유기 시냅스 트랜지스터 제작 공정의 최근 연구 동향)

  • Kwanghoon Kim;Eunho Lee;Daesuk Bang
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.43-49
    • /
    • 2024
  • In recent years, the flexible organic synaptic transistor (FOST) has garnered attention for its flexibility, biocompatibility, ease of processability, and reduced complexity, which arise from using organic semiconductors as channel layers. These transistors can emulate the plasticity of the human brain with a simpler structure and lower fabrication costs compared to conventional inorganic synaptic devices. This makes them suitable for applications in next-generation wearable devices and soft robotics technologies. In FOST, the organic substrate is sensitive to the device preparation temperature; high-temperature treatment processes can cause thermal deformation of the organic substrate. Therefore, low-temperature solution-based processing techniques are essential for fabricating high-performance devices. This review summarizes the current research status of low-temperature solution-based FOST devices and presents the problems and challenges that need to be addressed.