• Title/Summary/Keyword: Flexible endoscope

Search Result 27, Processing Time 0.027 seconds

Flexible Loop Wheel Mechanism for Intestine Movement (탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘)

  • Im, Hyeong-Jun;Min, Hyeon-Jin;Kim, Byeong-Gyu;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

Endoscopic Transforaminal Suprapedicular Approach in High Grade Inferior Migrated Lumbar Disc Herniation

  • Kim, Hyeun-Sung;Ju, Chang-Il;Kim, Seok-Won;Kim, Jong-Gue
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.2
    • /
    • pp.67-73
    • /
    • 2009
  • Objective : Although endoscopic procedures for lumbar disc diseases have improved greatly, the postoperative outcomes for high grade inferior migrated discs are not satisfactory. Because of anatomic limitations, a rigid endoscope cannot reach all lesions effectively. The purpose of this study was to determine the feasibility of endoscopic transforaminal suprapedicular approach to high grade inferior-migrated lumbar disc herniations. Methods : Between May 2006 and March 2008, a suprapedicular approach was performed in 53 patients with high grade inferior-migrated lumbar disc herniations using a rigid endoscope and a semi-rigid flexible curved probe. One-to-four hours after surgery, the presence of remnant discs was checked with MRI. The outcomes were evaluated with the visual analogue scale (VAS) score and the Oswestry Disability Index (ODI) one week after surgery. Results : The L2-3 level was involved in 2 patients and the L3-4 level was involved in 14 patients, while the L4-5 level was involved in 39 patients. There were single piece-type in 34 cases and a multiple piece-type in 19 cases. Satisfactory results were obtained in all cases. The mean preoperative VAS for leg pain was $9.32{\pm}0.43$ points (range, 7-10 points), whereas the mean ODI was $79.82{\pm}4.53$ points (range, 68-92 points). At the last follow-up examination, the mean postoperative VAS for leg pain was $1.78{\pm}0.71$ points and the mean postoperative ODI improved to $15.27{\pm}3.82$ points. Conclusion : A high grade inferior migrated lumbar disc is difficult to remove sufficiently by posterolateral endoscopic lumbar dscectomy using a rigid endoscope. However, a satisfactory result can be obtained by applying a transforaminal suprapedicular approach with a flexible semi-rigid curved probe.

A Paddling Based Locomotive Mechanism for Capsule Endoscopes

  • Park Suk-Ho;Park Hyun-Jun;Park Sung-Jin;Kim Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1012-1018
    • /
    • 2006
  • Diagnosis and treatment using the conventional flexible endoscope in gastro-intestinal tract are very common since advanced and instrumented endoscopes allow diagnosis and treatment by introducing the human body through natural orifices. However, the operation of endoscope is very labor intensive work and gives patients some pains. As an alternative, therefore, the capsule endoscope is developed for the diagnosis of digestive organs. Although the capsule endoscope has conveniences for diagnosis, it is passively moved by the peristaltic waves of gastro-intestinal tract and thus has some limitations for doctor to get the image of the organ and to diagnose more thoroughly. As a solution of these problems, various locomotive mechanisms for capsule endoscopes are introduced. In our proposed mechanism, the capsule-type microrobot has synchronized multiple legs that are actuated by a linear actuator and two mobile cylinders inside of the capsule. For the feasibility test of the proposed microrobot, a series of in-vitro experiments using small intestine without incision were carried out. From the experimental results, our proposed microrobot can advance along the 3D curved and sloped path with the velocity of about $3.29\sim6.26mm/sec$ and $35.1\sim66.7%$ of theoretical velocity. Finally, the proposed locomotive mechanism can be not only applicable to micro capsule endoscopes but also effective to advance inside of gastro-intestinal tract.

Single Incision Flexible Endoscopic Cholecystectomy in Dogs : Feasibility Study (개에서 단일 통로 유연 내시경 담낭 절제술 : 유용성 연구)

  • Lee, So-Yeon;Shin, Beom-Jun;Jeong, Seong-Mok
    • Journal of Veterinary Clinics
    • /
    • v.28 no.6
    • /
    • pp.555-561
    • /
    • 2011
  • Laparoscopic surgery is a well-established alternative to open surgery across disciplines. However, in veterinary medicine, laparoscopic surgery in dogs was rarely reported because of small abdominal size for multiple ports insertion. The concept of single-incision laparoscopic surgery (SILS) is to perform the entire laparoscopic operation through a single incision rather than conventional multiple small skin incisions. Indirect evidence of potential benefits of SILS, decreases operative morbidity related to reduction in port size, already exists. Therefore, this study was performed to evaluate the safety and feasibility of the modified form of SILS using flexible endoscope in Cholecystectomy before clinical adoption. A 2 cm single periumbilical incision was performed, and flexible endoscope was introduced into the abdominal cavity. A laparoscopic grasper was inserted into the abdominal cavity for the traction of gall bladder. Cystic duct and artery were ligated by 5 mm Hem-o-lok$^{(R)}$. Then, gall bladder was dissected and resected from the liver with 5 mm Autonomy Laparo-Angle Maryland dissector and endoscopic needle knife. Resected gall bladder was wrapped by using specimen pouch and was retrieved through abdominal incision from the cavity. All three gall bladders were successfully removed. Hematological changes were not observed during examination periods. No leakage sign was identified at necropsy. The flexible endoscope, as distinct from conventional rigid laparoscope, allows the visualization from various angles and the wide range of motion, result in less crowding.

Motion Characteristics of Smart Capsule with Triangular Arrangement of Actuators (삼각 배치 구동에 의한 스마트 캡슐의 이동 특성)

  • 임형준;민현진;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.854-857
    • /
    • 2001
  • At present, colonoscopy is performed by means of quite long and flexible endoscopes and controlled manually. Although the flexibility of the distal tip allows the endoscope to follow the tortuous path of the colon, the insertion of the endoscope requires the endoscopist to exert forces on and to perform rotations of the proximal end; these actions cause discomfort to the patient. Though self-propelling colonoscopic systems has been suggested to overcome these problems, it is difficult to pass through highly curved regions of the intestine. In this paper, we introduce a steering mechanism for a self-propelling coloinlscope, the smart capsule, which has three actuator units. The mechanism is designed not only to move forward and backward but also to pass through the curved regions. We derived the governing equations of this mechanism. Active movements and motion control are developed.

  • PDF

FHD Flexible Endoscopy Design Using Wedge Prism (Wedge Prism을 이용한 FHD급 연성 내시경 광학계 설계)

  • Park, Sung-Woo;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.295-302
    • /
    • 2022
  • In this paper, a wedge prism application method was studied to design a full-high-definition (FHD)-class high-resolution flexible endoscope. In the case of the conventional flexible endoscope optical system, the F number is made large or a liquid lens is applied to obtain the same imaging performance in a wide depth of field. However, there is a problem in that the diameter of the optical system increases because an additional light guide and equipment are required. To solve this problem, two wedge prisms were applied to the flexible endoscope optical system to adjust the image distance for each object distance. First, two wedge prisms were symmetrically placed on the designed endoscopic optical system. An image distance satisfying the target imaging performance according to each objective distance was derived. Next, the wedge prism decenter value for controlling the image distance was derived. By combining these two data, a wedge prism decenter value that satisfied the target imaging performance at each object distance was applied in multi configurations. As a result of the optimal design applied with the wedge prism, a target imaging performance of more than 20% of the modulation transfer function for a resolution of 178 cycles/mm was satisfied in the entire depth of field of 100 mm-7 mm.

Design of an Ultrasmall Flexible-endoscope Illumination Optical System with Bat-wing Light Distribution

  • Ju-Yeop Yim;Chul-Woo Park;Mee-Suk Jung
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.755-760
    • /
    • 2023
  • In this paper, an illumination optical system that can mitigate the saturation phenomenon in the center of an image (caused by the typical flexible-endoscope illumination system using LEDs with Lambertian light distribution) is designed. When an LED with Lambertian light distribution is used as a light source, the amount of light in the center of the endoscopic illumination system is relatively high, compared to the periphery, causing saturation in the image. Since this phenomenon causes difficulty in detecting the patient's lesion, it is necessary to find a lighting-system design that can alleviate the saturation phenomenon. Therefore, in this paper a lighting system with bat-wing light distribution, which can lower the intensity at the center and secure the maximum amount of light at the maximum light distribution angle, is designed. In addition, to check the performance of the designed lighting system, a simulation of illumination and luminance is conducted for a system using a common aspherical lens with otherwise the same components. As a result, it is confirmed that the lighting system designed in this paper effectively reduces the luminance value at the center and secures more luminance values at the periphery than the familiar lighting system.

Robotics for Advanced Therapeutic Colonoscopy

  • Wong, Jennie YY;Ho, Khek Yu
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.552-557
    • /
    • 2018
  • Although colonoscopy was originally a diagnostic imaging procedure, it has now expanded to include an increasing range of therapeutic interventions. These procedures require precise maneuvers of instruments, execution of force, efficient transmission of force from the operator to the point of application, and sufficient dexterity in the mobilization of endoscopic surgical instruments. The conventional endoscope is not designed to support technically demanding endoscopic procedures. In case of colonoscopy, the tortuous anatomy of the colon makes inserting, moving, and orientating the endoscope difficult. Exerting excessive pressure can cause looping of the endoscope, pain to the patient, and even perforation of the colon. To mitigate the technical constraints, numerous technically enhanced systems have been developed to enable better control of instruments and precise delivery of force in the execution of surgical tasks such as apposing, grasping, traction, counter-traction, and cutting of tissues. Among the recent developments are highly dexterous robotic master and slave systems, computer-assisted or robotically enhanced conventional endoscopes, and autonomously driven locomotion devices that can effortlessly traverse the colon. Developments in endoscopic instrumentations have overcome technical barriers and opened new horizons for further advancements in therapeutic interventions. This review describes examples of some of these systems in the context of their applications to advanced therapeutic colonoscopy.

Gasless Endoscopic Thyroidectomy Via Single Incision Axillary Approach (액와 단일절개 접근법을 이용한 내시경적 갑상선 절제술)

  • Kim, So Young;Ryu, Yoonjong;Jeong, Woo-Jin;Ahn, Soon-Hyun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.28 no.2
    • /
    • pp.114-117
    • /
    • 2012
  • Background and Objectives : To assure the surgical completeness of the gasless endoscopic thyroidectomy via single incision axillary approach using flexible videoscope which provide wide angle and working space, we compared single incision axillary approach and axillo-areolar approach by means of clinical, surgical outcomes. Materials and Methods : From March 2011 to July 2012, 24 patients who had underwent endoscopic thyroidectomy via transaxillary approach were enrolled. Of total, 17 patients underwent single incision axillary approach(group I) and the other 7 underwent axillo-areolar approach(group II). Results : Patient demographics, surgical indications were similar between the two groups. The operating time(group I 144.6min, group II 153.6 min ; p=.29), blood loss(group I : 55.4cc, group II : 35.7cc : p=.64), hospital stay(group I : 4.2days, group II : 4.4 days ; p=.65) were similar in the two groups. Overall, two patients in group I(2/17, 11.8%) experienced postoperative complications, including one hematoma and one seroma. Due to narrow working space, one patient was change to axillo-areolar approach during single incision axillary approach with $30^{\circ}$ rigid endoscope. Conclusion:Single incision axillary approach is safe and effective similar to other endoscopic thyroidectomy methods using flexible videoscope. Different with $30^{\circ}$ rigid endoscope, 10-mm flexible videoscope can put inside the axillary inicision site in different axis with endoscopic instruments. This difference in endoscopic axis help to prevent crash with endoscopic instrument.