• Title/Summary/Keyword: Flexible Trajectory

Search Result 82, Processing Time 0.02 seconds

Position error compensation of the multi-purpose overload robot in nuclear power plants

  • Qin, Guodong;Ji, Aihong;Cheng, Yong;Zhao, Wenlong;Pan, Hongtao;Shi, Shanshuang;Song, Yuntao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2708-2715
    • /
    • 2021
  • The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation.

Flexible Robot Manipulator Path Design and Application of Perturbation Adaptive Control to Reduce Residual Vibration (잔류진동 감소를 위한 탄성 로봇 매니퓨레이터 경로설계 및 섭동적응제어의 적용)

  • Park, K.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A method is presented for generating the path which significantly reduces residual vibration of a flexible robot manipulator and applying control theory to track the desired path. The desired path is optimally designed so that the system completes the required move with minimum residual vibration. A closed loop control theory is applied to track the planned path in the case of load variation. Specifically, it is desired that the optimally designed path has a better trajectory tracking capabilities during the residual vibration over the cycloidal path, in various cases of load. Perturbation adaptive control is used as closed loop control scheme. A planar two link manipulator is used to evaluate this method.

  • PDF

A V-Shaped Lyapunov Function Approach to Model-Based Control of Flexible-Joint Robots

  • Lee, Ho-Hoon;Park, Seung-Gap
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2000
  • This paper proposes a V-shaped Lyapunov function approach for the model-based control of flexible-joint robots, in which a new model-based nonlinear control scheme is designed based on a V-shaped Lyapunov function. The proposed control guarantees global asymptotic stability for link trajectory control while keeping all internal signals bounded. Since joint flexibility is used as a control parameter, the proposed control is not restricted by the degree of joint flexibility and be applied to flexibility-joint, partly-flexibility, or rigid-joint robots without modification. the effectiveness of the proposed control has been by computer simulation.

  • PDF

End point and contact force control of a flexible manipulator (유연한 조작기의 끝점위치 및 접촉력 제어)

  • 최병오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.552-558
    • /
    • 1993
  • In this paper, control of a planar two-link structurally flexible robotic manipulator executing unconstrained and constrained maneuvers is considered. The dynamic model, which is obtained by using the extended Hamilton's principle and the Galerkin criterion, includes the impact force generated during the transition from unconstrained to constrained segment of the robotic task. A method is presented to obtain the linearized equations of motion in Cartesian space for use in designing the control system. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) design methodology is exploited to design a robust feedback control system that can handle modeling errors and sensor noise, and operate on Cartesian space trajectory errors. The LQG/LTR compensator together with a feedforward loop is used to control the flexible manipulator. Simulated results are presented for a numerical example.

  • PDF

A Study on the Position Control Improvement of Flexible Robot Arm by Inverse Dynamics (역학을 이용한 탄성 로보트 아암의 선단 위치 제어 기어에 대한 연구)

  • 방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.9-13
    • /
    • 1997
  • This parer is a study on the inverse dynamics of a one-link flexible robot arm which is controlled by translational base motion. The system is composed of a flexible arm, a base for driving arm, a DC servomotor, and a computer. The arm base is moved so that the arm tip follows a desired function. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method. Moter voltage is obtained by simulation for tip trajectory functions i. e. Bang-Bang, Cosine and Gauss Function. And, the tip motion is measured while simulation results are applying. Then the results are investigated to select most proper input and to compare their chateristics. Experimental results show the Cosine function is most proper with respect to low maximum voltage and steady state error.

  • PDF

Output Feedback Control and Its Application to a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Joo, Hae-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.105-114
    • /
    • 2000
  • An output feedback control (OFC) is presented for a linear stochastic system with known disturbance and applied to a flexible spacecraft for the reduction of residual vibration while allowing the natural deflection during operation. By converting the tracking problem into regulator problem, the OFC minimizes the expected value of a guadratic objective function composing of error stats which always remain on the intersection of sliding hypersurfaces. For the numerical evaluation with a flexible spacecraft, a large slewing maneuver strategy is devised with a tracking model for nominal trajectory and start-cost-stop strategy for economical maneuver in conjunction with the input shaping technique. The performance and efficacy of the proposed control scheme are illustrated with the comparison of different maneuver strategies.

  • PDF

Adaptive Controller Design of the Flexible Robotic Manipulator (유연한 로보트 매니퓰레이터의 적응 제어기 설계)

  • 김승록;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.3
    • /
    • pp.25-34
    • /
    • 1992
  • This paper proposes a Self-Tuning control algorithm for tracking the reference trajectory by measuring the end-point of robot manipulator whose links are light and flexible, and the performance of it is tested through the computer simulation. As an object of system, a flexible robot manipulator with two-links is considered and an assumed mode shape method including gravity force is adopted to analyze the vibration modes for each links and dynamics equation is derived. The controller is designed as a combined form which consists of dynamic feedforward compensator and self-tuning feedback controller. The one supplies nominal torque and the other supplies variational torque to manipulator. Apart from the, K-incremental predictor is also proposed in order to eliminate the offset error. and it shows that the result of simulation adapted well to load change and rapid velocity.

  • PDF

Low-Power Walking Trajectory Generation of Biped Robot and Its Realization (이족 로봇의 저전력 보행 궤적 생성 및 구현)

  • Park Sang-Su;Kim Byung-Soo;Oh Jae-Joon;Choi Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.443-448
    • /
    • 2006
  • In this paper, a novel method is proposed for generating the low-power and stable walking trajectory of biped robots, and then a biped robot with 25 DOFs(degrees of freedom) is designed and implemented for the realization of the low-power walking trajectory generated by the proposed method. In our method, first a stable VPCG(vertically projected center of gravity) trajectory is generated, and then the trajectories of ankle and pelvis of a biped robot are planned to follow the preplanned stable VPCG trajectory, which produces a waking pattern without bending its knees and enables a biped robot to walk with less power consumption. On the other hand, a biped robot implemented in this paper has the mechanical structure of foot that enables a biped robot to support on the ground well, and the mechanical structure of pelvis that enables a biped robot to move flexibly. From results of the walking experiment and power consumption measurement, it was confirmed that the proposed method can generate the more stable and flexible trajectory with less power consumption compared with the existing methods which do not use the ankle of a biped robot.

Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator (유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural network learning algorithms. The proposed system learns membership functions for input variables using unsupervised competitive learning algorithm and output information using supervised outstar learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The control input to the process is determined by error, velocity and variation of error. Simulation and experiment results show a robustness of ACFAC compared with the PID control and neural network algorithms.

  • PDF

Vortex-induced vibration characteristics of a low-mass-ratio flexible cylinder

  • Quen, Lee Kee;Abu, Aminudin;Kato, Naomi;Muhamad, Pauziah;Siang, Kang Hooi;Hee, Lim Meng;Rahman, Mohd Asamudin A
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.621-631
    • /
    • 2020
  • A laboratory experiment is conducted is to investigate the behaviour of a low-mass-ratio and high aspect ratio flexible cylinder under vortex-induced vibration (VIV). A flexible cylinder with aspect ratio of 100 and mass ratio of 1.17 is towed horizontally to generate uniform flow profile. The range of Reynolds number is from 1380 to 13800. Vibration amplitude, in-line and cross-flow frequency response, amplitude trajectory, mean tension variation and hydrodynamic force coefficients are analyzed based on the measurement from strain gauges, load cell and CCD camera. Experimental results indicate that broad-banded lock-in region is found for the cylinder with a small Strouhal number. The frequency switches in the present study indicates the change of the VIV phenomenon. The hydrodynamic force responses provide more understanding on the VIV of a low mass ratio cylinder.