• Title/Summary/Keyword: Flexible Film

Search Result 886, Processing Time 0.026 seconds

A Flexible Amorphous $Bi_5Nb_3O_{15}$ Film for the Gate Insulator of the Low-Voltage Operating Pentacene Thin-Film Transistor Fabricated at Room Temperature

  • Kim, Jin-Seong;Cho, Kyung-Hoon;Seong, Tae-Geun;Choi, Joo-Young;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.17-17
    • /
    • 2010
  • The amorphous $Bi_5Nb_3O_{15}$ film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-$O_2$ film) has a hydrophobic surface with a surface energy of $35.6\;mJm^{-2}$, which is close to that of the orthorhombic pentacene ($38\;mJm^{-2}$, resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of $145\;nFcm^{-2}$ during and after 10s bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the polyethersulphone substrate at room temperature using a BNRT-$O_2$ film as a gate insulator exhibited a promising device performance with a high field effect mobility of $0.5\;cm^2V^{-1}s^{-1}$, an on/off current modulation of $10^5$ and a small subthreshold slope of $0.2\;Vdecade^{-1}$ under a low operating voltage of -5 V. This device also maintained a high carrier mobility of $0.45\;cm^2V^{-1}s^{-1}$ during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-$O_2$ film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

  • PDF

Low-voltage Organic Thin-film Transistors with Polymeric High-k Gate Insulator on a Flexible Substrates (고유전율 절연체를 활용한 저 전압 유연 유기물 박막 트랜지스터)

  • Kim, Jae-Hyun;Bae, Jin-Hyuk;Lee, In-ho;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.165-168
    • /
    • 2015
  • We demonstrated low-voltage organic thin-film transistors (OTFTs) with bilayer insulators, high-k polymer and low temperature crosslinkable polymer, on a flexible plastic substrate. Poly (vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) and poly (2-vinylnaphthalene) are used for high-k polymer gate insulator and low temperature crosslinkable polymer insulators, respectively. The mobility of flexible OTFTs is $0.17cm^2/Vs$ at gate voltages -5 V after bending operation.

Transferrable single-crystal silicon nanomembranes and their application to flexible microwave systems

  • Seo, Jung-Hun;Yuan, Hao-Chih;Sun, Lei;Zhou, Weidong;Ma, Zhenqiang
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.109-113
    • /
    • 2011
  • This paper summarizes the recent fabrication and characterizations of flexible high-speed radio frequency (RF) transistors, PIN-diode single-pole single-throw switches, as well as flexible inductors and capacitors, based on single-crystalline Si nanomembranes transferred on polyethylene terephthalate substrates. Flexible thin-film transistors (TFTs) on plastic substrates have reached RF operation speed with a record cut-off/maximum oscillation frequency ($f_T/f_{max}$) values of 3.8/12 GHz. PIN diode switches exhibit excellent ON/OFF behaviors at high RF frequencies. Flexible inductors and capacitors compatible with high-speed TFT fabrication show resonance frequencies ($f_{res}$) up to 9.1 and 13.5 GHz, respectively. Robust mechanical characteristics were also demonstrated with these high-frequency passives components.

Analysis of the Failure Position in the Unimorph Cantilever for Energy Harvesting (에너지 하베스팅용 압전 캔틸레버의 위치에 따른 파단점 분석)

  • Kim, Hyung-Chan;Jeong, Dae-Yong;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.121-123
    • /
    • 2007
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the wireless sensor node. As piezoelectric unimorph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Piezoelectric unimorph structure was composed of small stiff piezoelectric ceramic on the large flexible substrate. As there is the large Young's modulus difference between the flexible substrate and stiff piezoelectric ceramic, flexible substrate could not homogeneously transfer the vibration to stiff piezoelectric ceramic. As a result, most piezoelectric ceramics had been broken at the certain point. We measured and analyzed the stress distribution on the piezoelectric ceramic on the cantilever.

Barix Thin Film Encapsulation of OLED's on Flexible and Rigid Glass substrates; high temperature performance and manufacturing aspects.

  • Chu, X.;Moro, L.;Rutherford, N.;Visser, R.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1699-1702
    • /
    • 2007
  • We will discuss encapsulation of OLEDs on both flexible and rigid glass substrates. Accelerated testing at 6CC/90RH and 85C/85RH is compared and acceleration factors for OLED and Calcium test samples are discussed.We have tested the stability and performance of our barrier coating to much higher temperatures: up to 140 C. Water Vapor Transmission rates at temperatures from 60 to 140 C are presented. Rates and methods for low cost manufacturing on a large scale are analysed

  • PDF

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting (고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작)

  • Yu, Jong-Su;Yu, Semin;Kwak, Sun-Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

Development of in-situ Passivation System for High Efficiency and Long Lifetime of Flexible OLED Display (고효율 장수명의 Flexible OLED 디스플레이를 위한 in-situ Passivation System 개발)

  • Kim, Kwan-Do
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.85-88
    • /
    • 2017
  • This study focused on the development of in-situ passivation system and characterization of OLED display. The thin film passivation process with thin film layers was investigated using in-situ passivation technique in the cluster system. Thin films of $SiO_2$, SiNx passivation were manufactured using PECVD, which enables the deposition process at room temperature. The cluster system was created to develop in-situ passivation process, which OLED and thin film were fabricated in the cluster system without exposing to the atmospheric environment. It is expected that the in-situ passivation system of OLED with organic and inorganic layer provides the leading technique to develop flexible OLED.