• Title/Summary/Keyword: Flexible Control

Search Result 1,880, Processing Time 0.028 seconds

ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS USING FLEXIBLE SUBSTRATE (Flexible한 기판을 사용한 유기 박막 트랜지스터의 전기적 특성 연구)

  • Lee, Jong-Hyuk;Kang, Chang-Heon;Hong, Sung-Jin;Kwak, Yun-Hee;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1590-1592
    • /
    • 2002
  • In this work the electrical characteristics of organic TFTs using organic insulator and flexible polyester substrate have been investigated. Pentacene and PVP(polyvinylphenol) are used as an active semiconducting layer and dielectric layer respectively. Pentacene was thermally evaporated in vacuum at a pressure of about $1{\times}10^{-6}$ Torr and at a deposition rate of $0.5{\AA}$/sec, and PVP was spin-coated. Aluminium and gold were used for gate and source/drain electrodes. 0.1mm thick flexible polyester substrate was used instead of glass or silicon wafer.

  • PDF

Characteristics Analysis of Flexible Rail in Levitation Control System (부상제어 시스템에서 유연레일의 특성 분석)

  • Kim, Jong-Moon;Kim, Choon-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.733-734
    • /
    • 2006
  • In this parer, characteristics of the flexible rail in levitation control system are analysed. The magnetic levitation system is an electromagnet type and is full-scaled vehicles. The system consists of electromagnet, chopper, flexible rail, secondary suspension system and levitation controller. The mathematical modelling for the whole system is carried out. Especially, the flexible rail is modelled using second-order mass-spring-damper system. Using the derived model, the dynamic characteristics for the system are presented with different vehicle speed.

  • PDF

Inverse dynamic analysis of flexible robot arms with multiple joints (다관절 유연 로보트 팔의 역동력학 해석)

  • 김창부;이승훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.254-259
    • /
    • 1992
  • In this paper, we propose an optimal method for the tracking a trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint equations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation of flexible planner manipulator is presented.

  • PDF

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

A Study on the Tip Position Control of Flexible Beam by Linear Matrix Inequality

  • Kim, Chang-Hwa;Chu, Man-Suk;Yang, Joo-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.2-121
    • /
    • 2001
  • Many of today´s robot are required to perform tasks which demand a high level of accuracy in end-effector positioning. Those rigid robots are very inefficient and slow because its have large and heavy links, In an attempt to solve these problems, a robots using flexible beam were created. But the single-link flexible beam is infinite-dimensional system. Many researchers have proposed controlling such a beam an approximated model consisting of a finite a number of models. In this paper, we start by deriving the analytic model for the dynamics of general single-link beam, and a controller is designed for flexible beam with integral type servo system bases of the linear matrix inequality (LM) technique. To the end, simulation results show that a designed controller guarantees affective vibration control the single-link flexible beam.

  • PDF

Experimental Evaluation of Neural Network Based Controllers for Tracking the Tip Position of Flexible-Link (신경회로망을 이용한 유연한 관절의 선단위치 tracking 제어기에 관한 실험적 평가)

  • 최부귀;이형기;박양수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.738-746
    • /
    • 1998
  • This paper presents a neural network-based adaptive controller for a single flexible-link. The control for feedback-error loaming of neural network is designed by using the re-definition approach. The neural network controllers are implemented on an single flexible-link experimental test-bed. The tip response is significantly improved and the vibrations of the flexible modes are damped very fast. Experimental and simulation results are presented of the proposed tip position tracking controllers over the conventional PD-type, passive controllers.

  • PDF

Design on the Controller of Flexible Robot using Sliding Sector Control (슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계)

  • Han, Jong-Kil;Bae, Sung-Hwan;Yang, Keun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.541-546
    • /
    • 2010
  • When a flexible arm is rotated by a motor about an joint axis, transverse vibration may occur. The motor torque should be controlled in such a way that the moter rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, the dynamic model of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Nonlinear control with hysteresis deadzone using the sliding sector theory with continued input function in the sector is proposed.

Nonlinear variable structure system control for flexible link robot manipulators (유연성 로봇 매니퓰레이터에 대한 비선형 가변구조제어)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.280-284
    • /
    • 1997
  • In this paper, Nonlinear VSS control based on bang-bang control concept is derived under the assumption that the control input is bounded. We try to derive control algorithm which has almost same performance as the time optimal control. We focus this control scheme on the real implementation of DC motor position controller of flexible link, i.e. we obtain the switching curves from the real data of DC motor system operating under the full maximum and minimum applied voltages. State space is separated into several regions and we set different switching surfaces in each region to reduce chattering problem. The efficiency of the proposed controller is compared with PID controller and it is shown that the controller converges fast than PID controller without chattering. The hybrid controller scheme is also proposed not only to control the position of hub but also to reduce the vibration of end tip of flexible link.

  • PDF

A V-Shaped Lyapunov Function Approach to Model-Based Control of Flexible-Joint Robots

  • Lee, Ho-Hoon;Park, Seung-Gap
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2000
  • This paper proposes a V-shaped Lyapunov function approach for the model-based control of flexible-joint robots, in which a new model-based nonlinear control scheme is designed based on a V-shaped Lyapunov function. The proposed control guarantees global asymptotic stability for link trajectory control while keeping all internal signals bounded. Since joint flexibility is used as a control parameter, the proposed control is not restricted by the degree of joint flexibility and be applied to flexibility-joint, partly-flexibility, or rigid-joint robots without modification. the effectiveness of the proposed control has been by computer simulation.

  • PDF

A Study on the Controller Design for Active Vibration Control of flexible Cantilever Beam using Electromagnetic Actuators. (전자석 작동기를 이용한 유연 외팔보의 능동 진동 제어를 위한 제어기 설계에 관한 연구)

  • 최수영;정준홍;박기헌
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.30-41
    • /
    • 2004
  • This paper is concerned with the active vibration control of flexible cantilever beam system using electromagnetic farce actuator. The main objective of this paper is to propose the control algorithms and to implement the experimental setups for active vibration control. Dynamic equations of the electromagnetic actuator and the beam are combined to find the transfer function from the electromagnetic actuator to the laser sensor. The final transfer function is determined by considering only the first and second modes, and experiments confirm that this model works well. Several control algorithms are proposed and implemented on the experimental setups to show their efficacy. These include a PID control design, an optimal H$_2$ control design, and a fuzzy PID control design. Effectiveness and performance of the designed controller were verified by both simulation and experiment results.