• Title/Summary/Keyword: Flexible Control

Search Result 1,879, Processing Time 0.043 seconds

Dynamics and control of a large spacecraft with flexible appendages in gravitational field

  • Nohmi, Masahiro;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.368-371
    • /
    • 1995
  • This paper describes dynamic analysis and attitude control of a large spacecraft with flexible appendages in gravitational field. The effect of attitude control and vibration control of flexible appendages in gravitational field has been clarified. We demonstrate some simulations in gravitational field for some cases, and suggest the effects of gravitational torque, parameters of flexible appendages, attitude control and vibration control of flexible appendages.

  • PDF

Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control (슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어)

  • Chae, Seung-Hoon;Yang, Hyun-Seok;Park, Young-Phil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

Cooperative Control of Two Spatial Flexible Manipulators -Verification by Experiments- (3차원 양팔 유연 매니퓨레이터의 협조제어 (실험에 의한 검증))

  • Kim, Jin-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.87-94
    • /
    • 2000
  • In this paper we discuss the control scheme on cooperative control of two flexible manipulators working in 3D space. We propose a control scheme which consists of hybrid position/force control and vibration suppression control. Hybrid position/force control is extended from the scheme for two cooperating rigid manipulators to that for flexible ones. in addition to the control vibration suppression control based upon a lumped-mass-spring model of the flexible manipulators is applied. To illustrate the validity of the proposed control scheme we show experimental results. in the experiment a rigid object is handled by two cooperating flexible manipulators in 3D space.

  • PDF

Design and control of two-link flexible manipulators (2개의 유연한 링크를 갖는 매니퓰레이터의 설계 및 제어)

  • 정주노;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.383-386
    • /
    • 1996
  • In this paper, we propose a design method and control law for plannar type two-link flexible manipulator. In designing flexible links, we use Rayleigh's principle. To control flexible manipulator, input distribution controller is used, which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.

  • PDF

Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator (슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어)

  • 최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

Dynamic Response Control of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개 동적 응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.522-527
    • /
    • 2013
  • In this study, dynamic response control of a flexible wing such as gust loads alleviation using sliding mode control method is presented. To achieve this purpose, trailing edge control surface of a flexible wing is used as control means generating the aerodynamic control force. Aeroservoelastic CASE) model consisting of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. A sliding mode controller based on the estimated state vector is designed for active dynamic response control of flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under atmospheric turbulence loading.

  • PDF

Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode (슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어)

  • 신효필;이종광;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

Robust Control Design for Robots with Flexible Joint and Link

  • Jung, Eui-Jin;Ha, In-Chul;Kim, Chang-Gyul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.113.5-113
    • /
    • 2001
  • In this work, we consider the flexible manipulator system. Generally, the manipulator system may often be made on the base of the imperfect modeling, joint friction, payload change, and external disturbances. These elements are uncertain factors. These uncertainties and flexibility make difficult to control the system. To overcome these defects, a class of robust control law is proposed for the flexible manipulator system and the singular perturbation approach is applied. To show the effectiveness of this control law, simulation is presented for one degree of freedom flexible joint and flexible link system.

  • PDF

Position control fo a flexible gantry robot arm using smart actuators (스마트 작동기를 이용한 갠트리형 유연로봇팔의 위치제어)

  • 한상수;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1800-1803
    • /
    • 1997
  • This paper presents new feedback actuators to achieve an accurate position control of a flexible gnatry robot arm. the translational motion in the plane is generated by two d.c.motors and controlled by emplying elecor-rheological(ER) clutch acutators. The generated motion can be continuously controlled by controlling the intensity of lectric field imposed to the ER fluid domain which tunes the transmitted torque of the ER clutch. n the other hand, during control action of the translational motion a flexible arm attached to the moving mass produces undesirable oscillatins due to its inherent flexibility. The oscillations are actively suppressed by applying feedback voltages to piezoceramic acutators bonded on the surface of the flexible arm. The control electric fields to be applied to the ER clutch and the control voltage for the piezoceramic actuator are determined via the loop shaping esign procedures(LSDP) in the H.inf. control technique. Comsequently, an accuate positiion control at the end-point of the flexible am is achieved during planar motion.

  • PDF

Vibration Suppression Control of Two Cooperating Flexible Manipulators (양팔 협조 유연 매니퓰레이터의 진동억제 제어)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • For free motions, vibration suppression of single flexible manipulators has been one of the hottest research topics. However, for cooperative motions of multiple flexible manipulators, a little effort has been devoted for the vibration suppression control. So, the aim of this paper is to develop a hybrid force/position control and vibration suppression control scheme for multiple cooperation flexible manipulators handling a rigid object. In order to clarify the discussion, the motions of dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with hybrid position/force control scheme. Finally, Experiments are performed, and a comparison of experimental results is given to clarify the validity of our control scheme.