• Title/Summary/Keyword: Flatness deformation

Search Result 38, Processing Time 0.026 seconds

Experimental Study on Dry Shrinkage Deformation of Concrete with Popular Shrinkage Reducing Admixture (보급형 균열저감 콘크리트의 건조수축 변형에 관한 실험적 연구)

  • Kim, Young-Sun;Kim, Kwang-Ki;Lee, Joo-Ho;Kim, Bo-Seung;Kim, Jung-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.151-152
    • /
    • 2016
  • In this study, the shrinkage properties of concrete with the high-performance shrinkage admixture and the crack reinforcing materials applied to the high-flatness flooring of hypermarkets, outlets and warehouses was evaluated. The concrete with the popular shrinkage admixture is significantly reduced compared to the plain concrete without shrinkage admixture for the dry shrinkage deformation, and the difference of shrinkage ratio between the concretes has been shown to increase with increasing age.

  • PDF

Profile Simulation in Mono-crystalline Silicon Wafer Grinding (실리콘 웨이퍼 연삭의 형상 시뮬레이션)

  • Kim Sang Chul;Lee Sang Jik;Jeong Hae Do;Choi Heon Zong;Lee Seok Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.26-33
    • /
    • 2004
  • Ultra precision grinding technology has been developed from the refinement of the abrasive, the development of high stiffness equipment and grinding skill. The conventional wafering process which consists of lapping, etching, 1 st, 2nd and 3rd polishing has been changed to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Furthermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focuses on the flatness of the ground wafer. Generally, the ground wafer has concave pronto because of the difference of wheel path density, grinding temperature and elastic deformation of the equipment. Wafer tilting is applied to avoid non-uniform material removal. Through the geometric analysis of wafer grinding process, the profile of the ground wafer is predicted by the development of profile simulator.

Profile Simulation in Mono-crystalline Silicon Wafer Grinding (실리콘 웨이퍼 연삭의 형상 시뮬레이션)

  • 김상철;이상직;정해도;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.98-101
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive. the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, 1st, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the flatness of the ground wafer. Generally, the ground wafer has concave profile because of the difference of wheel path density, grinding temperature and elastic deformation of the equiptment. Tilting mathod is applied to avoid such non-uniform material removes. So, in this paper, the geometric analysis on grinding process is carried out, and then, we can predict the profile of th ground wafer by using profile simulation.

  • PDF

Structural Analysis of Built-in Side-by-Side Refrigerator with Ice Dispenser and Home Bar and Evaluation of Door Differences and Gasket Gap (얼음디스펜서와 홈바가 있는 빌트인 양문형 냉장고의 구조해석 및 도어 단차와 개스킷 간극의 평가)

  • Ryu, Si-Ung;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.465-473
    • /
    • 2018
  • A cabinet-door integrated finite element model for a built-in side-by-side refrigerator with an ice dispenser and home bar was constructed, and its deformation was analyzed by ANSYS. As loads, the food load in the shelf and baskets, and thermal load occurring during the normal operation condition were considered. From results of the analyses, the door height difference (DHD) and door flatness difference (DFD) between the two doors, and the increase in the gap of the door gasket, which affects the sealing of cool air in the cabinet, were derived. As results of an evaluation of the differences, the DHD and DFD under the assembled condition satisfied the acceptance criteria of the manufacturer. The food and thermal loads increased the DHD and DFD due to thermal deformation, and the DFD increased significantly. In addition, the increase in the gap of door gasket located between the cabinet and doors was derived from the results of displacements under the food and thermal loads. The evaluation showed that the maximum increase in gap appeared at the left edge of the freezing compartment gasket, which satisfied the acceptance criteria of the manufacturer.

A Study on the Thermal Deformation of Current Collectors by Burning Heat Pellets in Thermal Batteries (열전지의 열원 연소에 따른 전류집전체 열변형에 관한 연구)

  • Ji, Hyun-Jin;Kim, Jong-Myong;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.527-534
    • /
    • 2012
  • Thermal batteries are primary batteries that use molten salts as an electrolyte and employ an internal pyrotechnic source to heat the battery stack to operating temperatures, typically between 450 and $550^{\circ}C$. The unit cell of thermal batteries consists of an anode, an electrolyte, a cathode, a heat pellet and a current collector. The heat source for such batteries is typically heat pellets based on $Fe/KClO_4$. The elevated temperature by combustion of heat pellet is supposed to cause a flatness non-uniformity, buckling, with a lateral extension diameter of current collector. This paper mainly focused on the combustion and buckling model of current collector to simulate the effect of heat source. Mechanical stresses in the current collector caused by thermal stress is a critical design consideration of thermal batteries because the internal short circuit could be occurred.

Treatment for the Deformed Support of Oil Paintings Using Low-Pressure Table and New Materials (저압 테이블과 신소재를 이용한 유화의 지지대 변형에 대한 처리작업)

  • Kim, Joo-Sam
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.71-78
    • /
    • 1997
  • Oil painting shows a wide variety of damages due to differentcohesiveness between materials and different responses to temperature and humidity. The deforming flatness of canvas is a major cause of deterioration. The heat, pressure and moisture, and classical materials which had been traditionally used to correct the deformation of supports have caused damages to the paintings. In modern restoration of paintings, new methods have been developed to avoid the use of such potentially harmful elements. In this paper the correcting of deformed support with the use of low-pressure table, deformation correction frame and new materials, which has been developed both to protect the works and to maximize the effect of restoration.

  • PDF

Analysis of Residual Stress and Etching Curl of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력과 변형 해석)

  • 정호승;조종래;문영훈;김교성
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • The cold rolling conditions for the ultra thin steel for tension mask are very important because the residual stress that affects the flatness of strip is generate during the cold rolling. The residual stress in the sheet causes etching curls when it suffers perforation process. The residual stress through the thickness. To estimate the residual stress and deformation due to etching curl. FEM analysis is performed. Numerical simulation employ a ANSY5 5.6 and an elastic-plastic constitutive equation. The simulation results indicate the distribution of residual stress in the rolled sheet can be controlled by selecting the rolling conditions properly.

Development of the optimal Jig & fixture applied to ultra-precision saddle machining (복합가공기용 초정밀급 새들 가공을 위한 최적의 고정구 개발)

  • Kim, Byoung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.89-95
    • /
    • 2014
  • The increasing level of demand for multi-tasking machines requires a saddle with an ultra-precise machining accuracy level of $15{\mu}m$, as such a saddle is one of the main components of these machines. The manner of achieving ultra-precise machining accuracy mainly depends on the fixed forces. In this paper, we optimized the number of contact points and the contact positions to reduce the deformation of the saddle while it is machined. The performance levels of the proposed optimal jig and fixture are determined by measuring the flatness, parallelism and perpendicularity of a machined saddle. The machining accuracy is found to be lower than $15{\mu}m$ at all measured points.

Fabrication and characterization of fine pitch IR image sensor using a-Si (비정질 실리콘을 이용한 미세 피치 적외선 이미지 센서 제조 및 특성)

  • Kim, Kyoung-Min;Kim, Byeong-Il;Kim, Hee-Yeoun;Jang, Won-Soo;Kim, Tae-Hyun;Kang, Tai-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • The microbolometer array sensor with fine pitch pixel array has been implemented to the released amorphous silicon layer supported by two contact pads. For the design of focal plane mirror with geometrical flatness, the simple beam test structures were fabricated and characterized. As the beam length decreased, the effect of beam width on the bending was minimized, Mirror deformation of focal plane in a real pixel showed downward curvature by residual stress of a-Si and Ti layer. The mirror tilting was caused by the mis-align effect of contact pad and confirmed by FEA simulation results. The properties of bolometer have been measured as such that the NETD 145 mK, the TCR -2 %/K, and thermal time constant 1.99 ms.

A Study on the Process of Tube Spinning for the Titanium Alloy (티타늄 합금재의 튜브 스피닝 공정해석)

  • 홍대훈;황두순;이병섭;홍성인
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.55-63
    • /
    • 2000
  • Studies for tube spin forming have been implemented restrictively compared to spinning process, because of the complex of deformation mechanism. Especially there were not many studies by using FEM(Finite Element Method) for overcoming restriction of upper bound method. In this paper, the tube spinning process is analyzed to produce cylindrical body made by titanium alloy. In analysis, processing parameters was obtained by using upper bound method to consider material properties of titanium alloy and finite element analysis was implemented to investigate the flatness and the elongation of the titanium alloy workpiece by using ABAQUS code. The independent variables are ; material properties of workpiece, angles of roller, reduction of diameter. Three variables, two angles of roller and reduction of diameter are optimized by using the upper bound method. In this method, we can estimate the workable power, working force and reduction of diameter, and also the flatness and the elongation of workpiece by the finite elements analysis using ABAQUS/standard. The results indicates that these variables play a critical factors of spinning process for the titanium alloy and the optimum values of these variables.

  • PDF