• Title/Summary/Keyword: Flat-panel displays

Search Result 185, Processing Time 0.028 seconds

Diffractive Alignment of Dual Display Panels

  • Shin-Woong Park;Junghwan Park;Hwi Kim
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.72-79
    • /
    • 2024
  • Recent flat-panel displays have become increasingly complicated to facilitate multiple display functions. In particular, the form of multilayered architectures for next-generation displays makes precise three-dimensional alignment of multiple panels a challenge. In this paper, a diffractive optical alignment marker is proposed to address the problem of three-dimensional alignment of distant dual panels beyond the depth-of-focus of a vision camera. The diffractive marker is effective to analyze the positional correlation of distant dual panels. The possibility of diffractive alignment in multilayer display fabrication is testified with numerical simulation and a proof-of-concept experiment.

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF

Transparent Conductive Single-Walled Carbon Nanotube Films Manufactured by adding carbon nanoparticles

  • Lee, Seung-Ho;Kim, Myoung-Soo;Goak, Jung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.417-417
    • /
    • 2009
  • Although a transparent conductive film (TCF) belongs to essential supporting materials for many device applications such as touch screens, flat panel displays, and sensors, a conventional transparent conductive material, indium-tin oxide (ITO), suffers from considerable drawback because the price of indium has soared since 2001. Despite a recent falloff, a demand of ITO is expected to increase sharply in the future due to the trend of flat panel display technologies toward flexible, paper-like features. There have been recently extensive studies to replace ITO with new materials, in particular, carbon nanotubes (CNTs) since CNTs possess excellent properties such as flexibility, electrical conductivity, optical transparency, mechanical strength, etc., which are prerequisite to TCFs. This study fabricated TCFs with single-walled carbon nanotubes (SWCNTs) produced by arc discharge. The SWCNTs were dispersed in water with a surfactant of sodium dodecyl benzene sulfonate (NaDDBS) under sonication. Carbon black and fullerene nanoparticles were added to the SWCNT-dispersed solution to enhance contact resistance between CNTs. TCFs were manufactured by a filtration and transfer method. TCFs added with carbon black and fullerene nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy (optical transmittance), and four-point probe measurement (sheet resistance).

  • PDF

The Study of Glass Crystallization Mechanism Using Femtosecond Laser Pulse (극초단파레이저를 활용한 유리의 결정화 메커니즘 고찰)

  • Moon P.Y.;Yoon D.K.;Lee K.T.;Shin S.B.;Cho S.H.;Ryu B.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.213-219
    • /
    • 2006
  • To improve the strength of glass is being studied in order to contribute to weight saving of flat panel displays. Generally, the strength achieved of glass-ceramics is higher as is the fracture toughness by the formation of a heterogeneous phase inside glass. In this study, Ag-doped $45SiO_2-24CaO-24Na_2O-4P_2O_5\;and\;70SiO_2-10CaO-24Na_2O-10TiO_2$ glasses were irradiated to strengthen by crystallization using femto-second laser pulse. XRD, Nano-indenter and SEM etc., irradiation of laser pulse without heat-treated samples was analyzed. Samples irradiated by laser had higher value($4.4{\sim}4.56^*10-3Pa$) of elastic modulus which related with strength of glass than values heat-treated samples and these are $1.2{\sim}1.5$ times higher values than them of mother glass. This process can be applicable to the strengthening of thinner glass plate, and it has an advantage over traditional heat-treatment and ion-exchange method.

Class Strengthening by Crystallization with Femto Second Laser Pulse (극초단파레이저를 활용한 결정화에 의한 유리의 강도 증진)

  • Moon P. Y.;Lee K. T.;Yoon D. K.;Ryu B. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.171-174
    • /
    • 2005
  • To improve the strength of glass is being studied in order to contribute to weight saving of flat panel displays. Generally, the strength achieved of glass-ceramics is higher as is the fracture toughness by the formation of a heterogeneous Phase inside glass. In this study, Ag-doped $45SiO_2-24CaO-24Na_2O-4P_2O_5$ glasses were irradiated to strengthen by crystallization using femto-second laser pulse. UV/VIS, Spectroscope, XRD, nano-indenter and SEM etc. irradiation of laser pulse without heat-treated samples was analyzed. Samples irradiated by laser had higher value$(4.4\~4.56{\ast}10-3Pa)$ of elastic modulus which related with strength of glass than values heat-treated samples and these are $1.2\~1.5$ times higher values than them of mother glass. This process can be applicable to the strengthening of thinner glass plate, and it has an advantage over traditional heat-treatment and ion-exchange method.

  • PDF

High Performance Polyimides for Applications in Microelectronics and Flat Panel Displays

  • Ree Moonhor
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.1-33
    • /
    • 2006
  • Polyimides (PIs) exhibit excellent thermal stability, mechanical, dielectric, and chemical resistance properties due to their heterocyclic imide rings and aromatic rings on the backbone. Due to these advantageous properties, PIs have found diverse applications in industry. Most PIs are insoluble because of the nature of the high chemical resistance. Thus, they are generally used as a soluble precursor polymer, which forms complexes with solvent molecules, and then finally converts to the corresponding polyimides via imidization reaction. This complexation with solvent has caused severe difficulty in the characterization of the precursor polymers. However, significant progress has recently been made on the detailed characterization of PI precursors and their imidization reaction. On the other hand, much research effort has been exerted to reduce the dielectric constant of PIs, as demanded in the microelectronics industry, through chemical modifications, as well as to develop high performance, light-emitting PIs and liquid crystal (LC) alignment layer PIs with both rubbing and rubbing-free processibility, which are desired in the flat-panel display industry. This article reviews this recent research progresses in characterizing PIs and their precursors and in developing low dielectric constant, light-emitting, and LC alignment layer PIs.

Array Simulation Characteristics and TFT-LCD Pixel Design Optimization for Large Size, High Quality Display (대면적 고화질의 TFT-LCD 화소 설계 최적화 및 어레이 시뮬레이션 특성)

  • 이영삼;윤영준;정순신;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.137-140
    • /
    • 1998
  • An active-matrix LCD using thin film transistors (TFT) has been widely recognized as having potential for high-quality color flat-panel displays. Pixel-Design Array Simulation Tool (PDAST) was used to profoundly understand the gate si후미 distortion and pixel charging capability. which are the most critical limiting factors for high-quality TFT-LCDs. Since PDAST can simulate the gate, data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the resistivity of gate line material on the pixel operations can be effectively analyzed. The gate signal delay, pixel charging ratio and level-shift of the pixel voltage were simulated with varying the parameters. The information obtained from this study could be utilized to design the larger area and finer image quality panel.

  • PDF

The Optimization of AC-PDP Cell by 2D Simulations

  • Kim, Woong;Y.K. Shin;C.H. Shon;J.H. Kang;Park, J.S.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.227-227
    • /
    • 1999
  • Plasma display panel(PDP) is a leading technology for large-area flat panel displays. A current issue in operating the PDP cell is that the efficiency of the PDP cell is very low. To increase the efficiency of the PDP cell, the visible light needs to be maximized and the power consumption minimized. Since the excited xenons are related to the production of the visible light, it is important to optimize the cell geometry and the gas composition that produce the excited xenons more efficiently. A 2D-fluid code (FL2P) is developed and used to simulate the plasma dynamics and the radiation transport in the PDP cell. The cell is optimized with the code for various operating conditions and cell dimensions such as the voltage pulse, electrode length, electrode spacing, gap size, dielectric constant, gas mixture ratio, pressure, and pulse duration.

  • PDF

Simulations of Pixel Characteristics for Large Size and High Qualify TFT-LCD using a new sophisticated Capacitance Formulas (새로운 정전용량 계산식물 이용한 대면적 .고화질 TFT-LCD의 화소 특성 시뮬레이션)

  • 윤영준;정순신;김태형;박재우;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.613-616
    • /
    • 1999
  • An active-matrix LCD using thin film transistors (TFTs)has been widely recognized as having potential for high-quality color flat-panel displays. Pixel-Design Array Simulation Tool (PDAST) was used to profoundly understand the gate signal distortion and pixel charging capability, which are the most critical limiting factors for high-quality TFT-LCDs. Since PDAST can simulate the gate data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the new set of capacitance models on the pixel operations can be effectively analyzed, The set of models which is adopted from VLSI interconnections calculate more precise capacitance. The information obtained from this study could be utilized to design the larger area and finer image quality panel.

  • PDF

Low Cost Driving System for Plasma Display Panels by Eliminating Path Switches and Merging Power Switches

  • Lee, Dong-Myung;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.278-285
    • /
    • 2007
  • Recently, plasma display panels (PDP) have become the most promising candidate in the market for large screen size flat panel displays. PDPs have many merits such as a fast display response time and wide viewing angle. However, there are still concerns about high cost because they require complex driving circuits composed of high power switching devices to generate various voltage waveforms for three operational modes of reset, scan, and sustain. Conventional PDP driving circuits use path switches for voltage separation and a scan switch to offer a scan voltage for reset and scan operations, respectively. In addition, there exist reset switches to initialize PDPs by regulating the wall charge conditions with ramp shaped pulses, which means the necessity of specific power devices for the reset operation. Because power for the plasma discharge accompanied by a large current is transferred to a panel via path switches, high power rating switches are used for path switches. Therefore, this paper proposes a novel low-cost PDP driving scheme achieved by not only eliminating path switches but also merging the function of reset switches into other switches used for sustain or scan operations. The simulated voltage waveforms of the proposed topology and experimental results implemented in a 42-inch panel to demonstrate the validity of using a new gate driver that merges the functions of power switches are presented.