• 제목/요약/키워드: Flat-panel displays

검색결과 185건 처리시간 0.026초

플랫 판넬표시장치용 DC-DC 컨버터 집적회로의 설계 (A Integrated Circuit Design of DC-DC Converter for Flat Panel Display)

  • 이준성
    • 전자공학회논문지
    • /
    • 제50권10호
    • /
    • pp.231-238
    • /
    • 2013
  • 본 논문은 플랫판넬 디스플레이 장치에 사용할 DC-DC 변환기의 설계에 관한 것이다. 6~14[V]의 단일 DC 전원전압으로부터 플랫 판넬 백바이어스용 -5[V] DC 전압 발생회로(Negative DC Voltage Generator)와 승압된 15[V], 23[V] DC 전압 발생회로, 그리고 강압된 3.3[V] DC를 얻기 위한 회로를 설계하였다. 또한 기준 전압원으로 사용하기 위한 밴드갭 회로와 발진기, 레벨변환기 회로, 고온보호 회로 등을 설계하였다. 제작공정은 부(-)전압으로 동작하는 회로와 기타 회로를 분리하기 위해서 트리플-웰(Triple-Well)구조가 적용된 공정 내압 30[V], 최소선폭 0.35[${\mu}m$], 2P_2M CMOS 공정을 사용하였다. 설계된 모든 회로는 시뮬레이션으로 검증하여 동작을 확인하였으며 원 칩으로 제작하여 플랫판넬 디스플레이 장치에 응용할 수 있도록 기능을 확보하였다.

평판 표시기를 위한 수소화된 비정질실리콘 박막트랜지스터의 제작 (Fabrication of Hydrogenated Amorphous Silicon Thin-Film Transistors for Flat Panel Display)

  • 김남덕;김충기;최광수;장진;이주천
    • 대한전자공학회논문지
    • /
    • 제24권3호
    • /
    • pp.453-458
    • /
    • 1987
  • Amorphous silicon thin-film transtors (TFT's) have been designed and fabricated on glass substrates. The hydrogenated amorphous silicon (a-Si:H) thin-film has been deposited by decomposing silane(SiH4) in hydorgen ambient by rf glow discharge method. Amorphous silicon nitride(a-Si:H) has been chosen as the gate dielectric material. It has been prepared by decomposing the mixed gas of silane(SiH4) and ammonia(NH3). The electrical properties and performance characteristics of the thin-film transistrs have been measured and compared with the requirements for the switching elements in liquid crystal flat panel display. The results show that liquid crystal flat panel displays can be fabricated using the thin-film transistors described in this paper.

  • PDF

새로운 전극구조를 가진 ac-PDP의 전기 광학적 특성에 관한 연구 (I) (The study on the electrical and optical characteristics of a new structure for color ac plasma displays)

  • 이우근;신중홍;김준호;김두한;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2227-2229
    • /
    • 1999
  • As a direct-view flat panel displays, there are many devices, such as plasma display panels(PDPs), vacuum fluorescent displays (VFDs), and light emitting diode(LED). Among these, a PDP is the first type of panel display to be made commercially available. A 'Plasma display' is the general term for a flat display utilizing the light emission that is produced by gas discharge. However, the brightness and Luminous efficiency are still not adequate for consumer television. So, the new sustain electrode type of ac PDP was proposed. By arranging the transparent electrode of quadrangle by zigzag, the area of electrode are reduced, and the length of electrode gap is increased. It generates a high luminous efficiency(corresponding to a 40% improvement of standard type), the same discharge voltage characteristics, and the low power consumption at same luminance.

  • PDF

FPD용 공기부상 이송컨베이어 시스템 개발 (Development of Air-floating Conveyor System for FPD)

  • 노태정;이욱진
    • 한국산학기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.39-45
    • /
    • 2009
  • 디스플레이 장치에서 기존의 CRT는 곡면이며 무겁고 큰 부피 때문에 LCD, PDP와 같은 평판디스플레이(FPD)로 대체되고 있다. FPD는 $0.6{\sim}0.8mm$ 두께의 대면적 글래스에 여러 공정을 거친 후에 최종 제품 규격으로 절단하여 제작하기 때문에 글래스의 면적이 크면 클수록 FPD의 생산성이 높다는 밀접한 관계를 갖는다. 따라서 FPD 제조 업계에서는 글래스 면적을 증가시키기 위하여 노력하고 있다. 7세대 글라스($2,220mm\;{\times}\;1,870mm\;{\times}\;0.7mm$)를 대상으로 유한요소해석 및 유동해석을 통하여 이송장치, 배급장치, 수평/경사 변환장치 및 제어장치로 구성된 비접촉 공기부상 이송시스템을 개발하였다. 본 개발에서 확보한 설계기술을 통하여 글라스의 크기가 대형화 되더라도 관련 이송장비를 보다 쉽게 제작하여 적용할 수 있다.

Trend of System on Panel

  • Matsueda, Yojiro;Park, Yong-Sung;Choi, Sang-Moo;Chung, Ho-Kyoon
    • 인포메이션 디스플레이
    • /
    • 제6권5호
    • /
    • pp.4-9
    • /
    • 2005
  • There has been a new trend to integrate various kinds of circuits by low temperature polycrystalline silicon thin film transistor (LTPS TFT) on insulator substrates to achieve System on Panel (SOP) for flat panel displays. In this paper, we will review the trend of the SOP and discuss the utility and future possibility of the SOP.

Trend of System on Panel

  • Matsueda, Yojiro;Park, Yong-Sung;Choi, Sang-Moo;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.841-844
    • /
    • 2005
  • There has been a new trend to integrate various kinds of circuits by low temperature polycrystalline silicon thin film transistor (LTPS TFT) on insulator substrates to achieve System on Panel (SOP) for flat panel displays. In this paper, we will review the trend of the SOP and discuss the utility and future possibility of the SOP.

  • PDF

비정질 실리콘 광센서를 이용한 터치 감응 디스플레이 설계 및 제작 (A Touch-sensitive Display with Embedded Hydrogenated Amorphous-silicon Photodetector Arrays)

  • 이수연;박현상;한민구
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2219-2222
    • /
    • 2009
  • A new touch-sensitive hydrogenated amorphous silicon(a-Si:H) display with embedded optical sensor arrays is presented. The touch-sensitive panel operation was successfully demonstrated on a prototype of 16-in. active-matrix liquid crystal display (AMLCD). The proposed system provides the finger touched point without the real-time image processing of information of the captured images. Due to the simple architecture of the system, we expect the introduction of large-area touch-sensitive display panels.

The Next Wave in Display Innovation

  • Webster, Steven C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.4-4
    • /
    • 2008
  • The progress in flat panel displays over the last two decades has been astonishing. In just 20 years, the LCD-TV grew up from a 2-inch curiosity, to an industry that will sell about 120 million flat panel TV's this year, with viewing area up to 4000 times larger. That success is based on continuous innovation, especially in manufacturing processes. For the next decade to bring another doubling of the business, progress will need to continue in four major areas: Human factors, ecological impact, visual quality, and of course continued drive towards affordability. This talk will detail the technology advances that can allow this industry to meet those challenges. Human factors. Today, we adapt our lifestyle to our technology. People organize their offices, and their homes, around displays. We pass around mobile phones to share images, rather than experiencing them as a group. Billions of newspapers continue to be sold daily. Advances in flexible displays can lead to large portable displays. "New era projection" includes the handheld Pico Projectors that are already on the market, and will ultimately appear integrated in mobile phones the same way cameras do today. "Eco" impact. Today TV's are one of the top energy consumers in a U.S. home, and the fastest growing. Watching a large flat panel TV can cost twice as much as running a large refrigerator. With today's concern about energy consumption, regulations are starting to emerge worldwide to limit TV electrical use. Fortunately, good solutions exist in using light management films to eliminate bulbs, saving power without increasing cost. Going forward, LED backlights will drive another step downward. OLED displays might be the ultimate solution. Visual quality. The color of an LCD-TV is still often considered inferior to a far less expensive CRT. And almost all displays suffer from representing a three-dimensional world on a two dimensional surface. The technology to improve color is available today, and will likely move from premium sets into the mainstream as costs come down. 3D is now arriving in movie theaters worldwide, and that will drive up the demand for similar realistic images in home theaters. And the technology is emerging today for 3D representation to move beyond specialized applications into everyday use, on screens large and small. Affordability. The world takes cost-down miracles for granted in consumer electronics. Each of these other advances will be balanced with a drive for affordability, especially as the market grows in emerging countries. The other three challenges must be met without increasing cost. Putting this all together, the next few years will emphasize "eco friendly" designs, and enhanced images such as 3D. By 2013 we will start to see serious penetration by emissive technologies (OLED, high efficiency plasma, or other), with the "ultimate display" likely not in the market for a decade. Lots of opportunities for innovation remain ahead of us.

  • PDF

Thin-Film Photosensors for OLED Flat-Panel Displays

  • Cok, Ronald S.;Nishikawa, Ryuji;Ogawa, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.277-280
    • /
    • 2004
  • Thin-film photosensors on organic light emitting diode (OLED) glass substrates using active-matrix OLED TFT manufacturing processes have been constructed and optimized, and their performance has been characterized. Suitable control circuitry and applications are proposed. The photosensors may be integrated into OLED displays for detection of ambient illumination and for detection of OLED light emission, thereby enabling output, uniformity, and aging compensation.

  • PDF

Investigations into mechanical durability of thin display coatings

  • Currie, Edwin;Thies, Jens;Meijers, Guido;Chawla, Chander
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.981-984
    • /
    • 2005
  • Many flat panel displays displays rely on polymeric substrates with thin film coatings, such as anti-reflective, anti-static and hardcoats, to improve optical and mechanical properties of the display. In this paper we briefly discuss the principles underlying the mechanical robustness of such coated structures, and examine two fitness-for-use tests currently employed by the industry. We compare the teachings with some results obtained with our hardcoats and anti-reflective coatings.

  • PDF