• Title/Summary/Keyword: Flat plate flow

Search Result 398, Processing Time 0.026 seconds

Numerical Simulation on Interactions of Longitudinal Vortices in a Turbulent Boundary Layer (종방향 와동과 난류경계층의 상호작용에 관한 수치해석)

  • Yang Jang-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.637-644
    • /
    • 2005
  • This paper describes the numerical simulation of the interaction between longitudinal vortices ("common flow up") and a 3-D turbulent boundary layer over a flat plate To analyze the common flow up Produced from vortex generators. the flow field behind the vortex generators Is modeled by the information that is available from studies on a half-delta winglet. Also. the Reynolds-averaged Navier-Stokes equation for three-dimensional turbulent flows. together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of AF-ADI. The computational results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall Also. the numerical results. such as Reynolds stresses. turbulent kinetic energy and skin friction characteristics generated from the vortex generators . are reasonably close to the experimental data.

Active Flow Control Using the Synthetic Jet Actuator (Synthetic Jet Actuator를 이용한 능동 유동 제어)

  • Noh Jongmin;Kim Chongam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

A Study of Supersonic Flow Around Lateral Jet Controlled Missile (측 추력 제어 미사일 주위의 초음속 유동현상 연구)

  • Min Byung-Young;Lee Jae-Woo;Byun Yung-Hwan;Hyun Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.28-34
    • /
    • 2002
  • A computational study of supersonic flow around lateral jet controlled missile has been performed. For this study, three dimensional Navier-Stokes code(AADL3D) has been developed. Spalart-Allmaras one equation turbulence model has been implemented on the AADL3D code for relatively rapid computational time. For the validation of developed code, AADL3D, pressure distributions on an ogive-cylinder body has been compared with experimental data. Also, the shock structure of sonic jet on the flat plate in the supersonic flow field has been compared with experimental flow visualization result to see the analysis capability of freestream-jet interaction case. A case study has been performed through comparing the normal force coefficient and the moment coefficient of missile body for several jet flow conditions. Current results will be used to the optimum design of a lateral jet controlled missile.

  • PDF

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

An analysis of Two-Dimensional Hydrofoil in Gust (GUST 중에서의 2차원 수중익 해석)

  • Kim, Hyeong-Tae;Lee, Chang-Seop;Yang, Seung-Il
    • 한국기계연구소 소보
    • /
    • v.4 no.2
    • /
    • pp.49-63
    • /
    • 1982
  • In this paper, a classical gust problem is treated by using the numerical lifting¬-surface theory to verify the effect of gust-a sudden fluctuating fluid velocity around an object, which is normal to the main stream direction-on the hydrody¬namic forces, especially the mean thrust in upstream direction, acting on the two¬-dimensional flat plate. In this case, the mean thrust wholly resorts to the leading edge suction, and it is the same situation to the case of the heaving plate in uniform flow. The ph¬enomenon of leading edge suction is very important for the flapping propulsion of animals, typical to fish and birds, and can be related to the prediction of the hydrodynamic forces acting on marine propellers operating in gustlike wakes of ships. The results of this paper can be easily superposed to those of the reference [1J in order to solve the problem of the two-dimensional oscillacting plate in gust

  • PDF

The Effect of Nozzle Diameter on Heat Transfer to a Fully Developed Round Impinging Jet (완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향)

  • Lee, Dae-Hee;Won, Se-Youl;Lee, Young-Min;Cho, Heon-No
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.519-525
    • /
    • 2000
  • The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.

Relation Between Welding Shapes and the Vibration Energy Flows of Steel Plate (강판의 용접형상과 진동에너지의 변화에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In the structures of automobiles and ships which have engines for works, the vibration energies generated by the engines are transferred to dissipation parts through the structures which is welded and bolted with beams and plates. The vibration energies generated by resonance frequencies are the reasons of the resonance phenomena. To solve these problems, up to the present, we have studied to avoid the resonance, and add the higher damping characteristics. However, we need to understand the structural energy flows, to design the structures clearly which have the characteristic of welding. The object of this study is to make differences clear in the characteristics of structures which have some welded part on an homogenous flat plate. In this investigation, we study the flows of structural vibration energy experimently, and then, some knowledge for dynamic structural design is obtained.

  • PDF

Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate (강제대류 층류 막응축에서 복합열전달)

  • Lee Euk-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.238-245
    • /
    • 2006
  • This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^*/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{\rho_l{\mu}_l/{\rho_v{\mu}_v}$ and the conjugate parameter $\zeta$. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

An experimental study on the local velocity acceleration in a flat plate boundary layer diffusion flame (평판 경계층 확산화염에서의 국부적 가속현상에 관한 실험적 연구)

  • 심성훈;하지수;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.847-864
    • /
    • 1988
  • The main purpose of this study is to investigate the local velocity acceleration in a boundary layer diffusion flame over a flat plate. In order to know the effect of separation on the local velocity acceleration, two typical cases, flows with and without separation, are considered. For these cases, flow visualization using paraffine smoke tracers has been made. Mean velocity and r.m.s. value of fluctuating velocity are measured by using a laser Doppler velocimeter. In addition, measurements of time-mean concentration and time-mean temperature have been made. Time-mean density profiles have been obtained from the data of concentration and temperature. The obtained results are summarized as follows : (1) In the case without separation, the local velocity acceleration is clearly observed near the visible flame zone for all flow conditions. On the while, in the case with serration, the local velocity acceleration is observed only at low free stream velocity and high fuel injection velocity. As increasing the free stream velocity or decreasing the fuel injection velocity, it is not distinctly observed in the mean velocity profile. (2) The r.m.s. value of fluctuating velocity is significantly decreased by combustion in the case with separation. But in the case without separation, the r.m.s. value is increased near the visible flame zone in comparison with cold flow. In both cases, the peak value of r.m.s. appeared just at the visible flame zone, where the mean velocity gradient is not too high.

A Study of using Wall Function for Numerical Analysis of High Reynolds Number Turbulent Flow (고 레이놀즈수 유동의 수치해석시 벽함수 사용에 관한 연구)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.647-655
    • /
    • 2010
  • In this paper, a numerical study is carried out for super-pipe, flat plate and axisymmetric body flows to investigate a validity of using wall function and high $y_1^+$ in calculation of high Reynolds number flow. The velocity profiles in boundary layer agree well with the law of the wall. And it is found that the range of $y^+$��which validated the logarithmic law of the wall grows with increasing Reynolds number. From the result, an equation is suggested that can be used to estimate a maximum $y^+$ value of validity of the log law. And the slope(1/$\kappa$) of the log region of the numerical result is larger than that of experimental data. On the other hand, as $y_1^+$ is increasing, both the friction and the pressure resistances tend to increase finely. When using $y_1^+$ value beyond the range of log law, the surface shear stress shows a significant error and the pressure resistance increases rapidly. However, when using $y_1^+$ value in the range, the computational result is reasonable. From this study, the use of the wall function with high value of $y_1^+$ can be justified for a full scale Reynolds number ship flow.