• Title/Summary/Keyword: Flat plate flow

Search Result 398, Processing Time 0.025 seconds

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

Heat Transfer Enhancement in a Circular Rod Using Mixing Vane (Mixing Vane에 의한 단일봉에서의 열전달 촉진)

  • Lee, Sang-Sub;Yoo, Seong-Yeon;Kim, Byeong-Chae;Kim, Eun-Kee;Lim, Duck-Jae;Chung, Chang-Kyu;Kim, Seoug-Beom
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.408-413
    • /
    • 2003
  • Naphthalene sublimation technique is used to investigate the average and local heat transfer from the circular rod, and to determine the average and local heat transfer from the circular rod with and without square wing type mixing vane in axial flow. The experiments are performed for a circular rod and flat plate with and without mixing vane in wind tunnel. In comparison with flat plate and circular rod in axial flow, averaged Nusselts number is increased 2 times as the increase of Reynolds number with mixing vane. Longitudinal vortex induced by square wing type has the stronger vortex strength, so square wing type vortex generator shows an effect further in downstream.

  • PDF

Similarity and Approximate Solutions of Laminar Film Condensation on a Flat Plate

  • Lee, Sung-Hong;Lee, Euk-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1339-1345
    • /
    • 2001
  • Laminar film condensation of a saturated pure vapor in forced flow over a flat plate is analyzed as boundary layer solutions. Similarity solutions for some real fluids are presented as a function of modified Jakob number (C$\_$pι/ ΔΤ/Prh$\_$fg/) with property ratio (No Abstract.see full/text) and Pγ as parameters and compared with approximate solutions which were obtained from energy and momentum equations without convection and inertia terms in liquid flow. Approximate solutions agree well with the similarity solutions when the values of modified Jakob number are less then 0.1 near 1 atmospheric pressure.

  • PDF

A Study on the Heat Transfer Characteristics on Flat Plate Surface by Two-dimensional Impinging Air Jet (평판전열면(平板傳熱面)에 충돌(衝突)하는 2차원충돌분류계(二次元衝突噴流系)의 열전달특성(熱傳達特性)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Kim, S.P.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The purpose of this study is to investigate the heat transfer characteristics and the flow structure in the case of rectangular air jet impinging vertically on the flat heating surface. The maximum value of Nusselt number at stagnation point is observed at H/B=10. It is found that this trend has been caused by the effect of stretching of large scale vortex in the stagnation region. For potential core region the Nusselt number distribution in the downstream of the stagnation point decreases gradually and begins to increase at about X/B=3. From the flow visualization it could be seen that small eddy produced from the nozzle edge grows in large scale and that large scale eddy disturbed the thermal boundary layer on the heating plate. The local average Nusselt number becomes maximum at X/B=0.5 regardless of H/B variation.

  • PDF

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

Approximate Solutions for Laminar Film Condensation on a Flat Plate (평판에서 층류 막응축의 근사해)

  • Lee, S.H.;Kweon, J.Y.;Lee, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.215-221
    • /
    • 1991
  • Laminar film condensation of a saturated vapor in forced flow over a flat plate is analyzed by using integral method. Laminar condensate film is so thin that the inertia and thermal convection terms in liquid flow can be neglected. Approximate solutions for water are presented and well agreed with the similarity solutions over the wide range of physical parameter, Cp1(Ts-Tw)/Pr.hfg. For the strong condensation case, it is found that magnitude of the interfacial shear stress at the liquid-vapor interphase boundary is approximately equal to the momentum transferred by condensation, i.e., ${\tau}_i{\simeq}\dot{m}(U_O-U_i)$.

  • PDF

A comparative study between stress concentration factor of the infinite plate with elliptic hole and presuure coefficient of the potential flow around elliptic cylinder (추원공을 가진 무한평판의 응력집중계수와 추원주를 가진 Potential Flow 의 응력계수와 비교연구)

  • ;;Yoon, Kab Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.354-361
    • /
    • 1981
  • This study aims to compare stress concentratior factors in a loaded elastic body of the infinite plate with pressure coefficients of a fluid in the potential flow. First in view of hydrodynamics, when a single elliptic cylinder in the form of a bluff body stands in the potential flow, the pressure distribution(doefficient, C$\_$p/around the elliptic cylicder which is changed according to the position(angular displacements)is theoretically analyzed and calulated; secondly, in view of theory of elasticity, when an eliptic hole which is made on a flat plate gets tension, the stress distribution(factor) around the elliptic hole which is changed according to the position(angular displacements )is theoretically(K$\_$t/) and experimentally (K$\_$e/) measured; and finally. The results are compard and examined.

Pressure field of a rotating square plate with application to windborne debris

  • Martinez-Vazquez, P.;Kakimpa, B.;Sterling, M.;Baker, C.J.;Quinn, A.D.;Richards, P.J.;Owen, J.S.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.509-529
    • /
    • 2012
  • Traditionally, a quasi steady response concerning the aerodynamic force and moment coefficients acting on a flat plate while 'flying' through the air has been assumed. Such an assumption has enabled the flight paths of windborne debris to be predicted and an indication of its potential damage to be inferred. In order to investigate this assumption in detail, a series of physical and numerical simulations relating to flat plates subject to autorotation has been undertaken. The physical experiments have been carried out using a novel pressure acquisition technique which provides a description of the pressure distribution on a square plate which was allowed to auto-rotate at different speeds by modifying the velocity of the incoming flow. The current work has for the first time, enabled characteristic pressure signals on the surface of an auto-rotating flat plate to be attributed to vortex shedding.

A Numerical Study on Performance of Air-to-Air Plastic Plate Heat Exchanger

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik;Kang, Hyoung-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • The purpose of this research is to develop high efficiency plastic plate heat exchangers which can be substituted for conventional aluminum plate heat exchangers. Four simulation models of plastic plate heat exchangers are designed and simulated: that is, flat plate type, turbulent promoter type, corrugate type and dimple type heat exchanger. The flat plate type is designed as the reference model in order to evaluate how much thermal performance increases. The turbulent promoter type is fabricated with cylindrical-type vortex generators and rib-type turbulent promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. Numerical simulation is carried out using the FLUENT code. The flows are assumed as a three-dimensional, incompressible and turbulent model. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type. The tendency of numerical simulation results is in good agreement with that of the experimental results.