• Title/Summary/Keyword: Flat Surfaces

Search Result 347, Processing Time 0.03 seconds

Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement

  • Lee, Yoon;Yi, Young-Ah;Kim, Sin-Young;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: To evaluate the effect of different surface treatment methods (yttria-tetragonal zirconia polycrystal [Y-TZP] primers, air-abrasion, and tribochemical surface treatment) on the shear bond strength between (Y-TZP) ceramics and etch-and-rinse non-10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing resin cements. Materials and Methods: Y-TZP ceramic surfaces were ground flat with 600-grit silicone carbide abrasives paper and then divided into seven groups of ten. They were treated as the following: untreated (control), Monobond Plus (IvoclarVivadent), Z-PRIME Plus (Bisco Inc.), ESPE Sil with CoJet (3M ESPE), air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. The surface of Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Non-MDP-containing cements were placed on the surface-treated Y-TZP specimens. After thermocycling, shear bond strength test was performed. Bond strength values were statistically analyzed using one-way analysis of variance and Student-Newman-Keuls multiple comparison test (P<0.05). Result: The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength ($14.94{\pm}1.70MPa$) followed by Monobond Plus combined with air-abrasion ($10.70{\pm}1.71MPa$), air-abrasion ($10.47{\pm}1.60MPa$), ESPE Sil after CoJet treatment ($10.38{\pm}0.87MPa$), Z-PRIME Plus application ($10.00{\pm}1.70MPa$), and then Monobond Plus application ($9.25{\pm}0.86MPa$). The control ($6.70{\pm}1.49MPa$) indicated the lowest results (P<0.05). The SEM results showed different surface morphologies according to surface treatment methods compared with the Y-TZP control. Conclusion: The shear bond strength between the Y-TZP ceramic and the non-MDP-containing resin cement was the greatest when the surface was treated with air-abrasion and MDP-containing Z-PRIME Plus primer.

Visual-Attention Using Corner Feature Based SLAM in Indoor Environment (실내 환경에서 모서리 특징을 이용한 시각 집중 기반의 SLAM)

  • Shin, Yong-Min;Yi, Chu-Ho;Suh, Il-Hong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.90-101
    • /
    • 2012
  • The landmark selection is crucial to successful perform in SLAM(Simultaneous Localization and Mapping) with a mono camera. Especially, in unknown environment, automatic landmark selection is needed since there is no advance information about landmark. In this paper, proposed visual attention system which modeled human's vision system will be used in order to select landmark automatically. The edge feature is one of the most important element for attention in previous visual attention system. However, when the edge feature is used in complicated indoor area, the response of complicated area disappears, and between flat surfaces are getting higher. Also, computation cost increases occurs due to the growth of the dimensionality since it uses the responses for 4 directions. This paper suggests to use a corner feature in order to solve or prevent the problems mentioned above. Using a corner feature can also increase the accuracy of data association by concentrating on area which is more complicated and informative in indoor environments. Finally, this paper will prove that visual attention system based on corner feature can be more effective in SLAM compared to previous method by experiment.

An Experimental Study on the Fracture and Shear Bonding Strength of Resin-modified Glass lonomer Cements (Resin-modified glass ionomer cements의 파절 및 저단결합강도에 관한 실험적 연구)

  • Kim, Jae-Gon;Yang, Cheol-Hee;An, Soo-Hyeon;Rho, Yong-Kwan;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.234-248
    • /
    • 1998
  • The purpose of this study was to compare the fracture and shear bonding strength of resin-modified glass ionomer cements with composite resin and conventional glass ionomer cement Three kinds of restorative materials including a composite resin (Z 100), a conventional glass ionomer cement(Fuji II), and resin- modified glass ionomer cements(Fuji II LC, Vitremer, Dyract and Compoglass) were investigated in this study. For measurement of fracture and shear bonding strength, disk samples of the materials were prepared and cylindrical samples of the materials were bonded the flat enamel and dentin surfaces according to manufactuer's instructions. All specimen were determinated by using an Instron testing machine with a crosshead speed of 1 mm/min. Then, each treated enamel and dentin surface was observed by SEM. The following results were obtained. 1. The bi-axial flexural strength of Z 100 was highest, and Fuji n LC, Vitremer, Dyract and Compoglass were significantly higher than Fuji n (P<0.05). 2. The shear bonding strength of Z 100 on the enamel and dentin surface was higher than other experimental groups except Fuji II LC(P<0.05). Fuji II LC was significantly higher than Fuji II (P<0.05), but in the case of Vitremer, Dyract and Compoglass were similar to Fuji II (P>0.05). 3. The shear bonding strength of Z 100 and Fuji II LC on the enamel surface were highly increased as compared with dentin surface (P<0.05), but in the case of Fuji II, Vitremer, Dyract and Compoglass were not different between enamel and dentin(P>0.05). 4. In the Z 100 and Fuji II LC, obvious etched enamel surface and exposed dentinal tubules according to remove of smear layer and smear plug were observed.

  • PDF

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

Mechanical Bending Process and Application for a Large Curved Shell Plate by Multiple Point Press Machine (무금형 다점 펀치를 사용한 선체외판의 분할 성형 가공 정보 계산 시스템 개발)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Ryu, Cheol-Ho;Han, Myung-Soo;Kim, Kwang-Ho;Kim, Kwang-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.528-538
    • /
    • 2011
  • As a forming method for curved hull plates more efficient than the flame bending, mechanical bending using multi point press forming and die-less forming is discussed in this paper. the mechanical forming is a flexible manufacturing system for automatically forming of hull parts. It is especially suited to varied curved parts. This paper discusses a multiple point pressing machine composed of a pair of reconfigurable punches in order to achieve the rapid forming of curved hull plates using division forming and presents how forming information is obtained from the given design surface. Although the mechanical forming can be efficient in the metal forming, spring back after pressing is a phenomenon which must be carefully considered when quantifying the process variables. If the spring back is not accurately controlled, the fabricated shell plate cannot meet assembly tolerance. This paper describes the principles to calculate the proper stroke of each punch at the divided areas. the strokes are determined by an iterative process of sequential pressing and spring back compensation from an unfolded flat shape to its given design surface. FEA(finite element analysis) is used to simulate the spring back of the plate and the IDA(iterative displacement adjustment) method adjusts the offset of pressing punches from the deformation results and the design surface. The shape deviations of two surfaces due to spring back are compensated by integrated system using FEA and IDA method. For the practical application, It is aimed to develop an integrated system that can automatically perform the compensation process and calculate strokes of punches of the double sides' reconfigurable multiple-press machine and some experimental results obtained with mechanical bending are presented.

Effect of the additional application of a resin layer on dentin bonding using single-step adhesives (중간층 레진 적용이 단일 접착과정 상아질 접착제의 접착에 미치는 영향)

  • Choi, Seung-Mo;Park, Sang-Hyuk;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • The purpose of this study was to prove that an intermediate resin layer (IRL) oan increase the bond strength to dentin by reducing the permeability of single-step adhesives. Flat dentin surfaces were created on buccal and lingual side of freshly extracted third molar using a low-speed diamond saw under copious water flow. Approximately 2.0 mm thick axially sectioned dentin slice was abraded with wet #600 SiC paper. Three single-step self-etch adhesives; Adper Prompt L-Pop (3M ESPE, St Paul, MN, USA), One-Up Bond F (Tokuyama Corp, Tokyo, Japan) and Xeno III (Dentsply, Konstanz, Germany) were used in this study. Each adhesive groups were again subdivided into ten groups by; whether IRL was used or not; whether adhesives were cured with light before application or IRL or not; the mode of composite application. The results of this study were as follows; 1. Bond strength of single-step adhesives increased by an additional coating of intermediate resin layer, and this increasement was statistically signigicant when self-cured composite was used (p < 0.001). 2. When using IRL, there were no difference on bond strengths regardless the curing procedure of single-step adhesives. 3. There were no significant difference on bond strengths between usage of AB2 or SM as an IRL. 4. The thickness of Hybrid layer was correlated with the acidity of adhesive used, and the nanoleakage represented by silver deposits and grains was examined within hybrid and adhesive layer in most of single-step adhesives. 5. Neither thickness of hybrid layer nor nanoleakage were related to bond strength.

COMPATIBILITY OF SELF-ETCHING DENTIN ADHESIVES WITH RESIN LUTING CEMENTS (자가부식형 상아질접착제와 레진시멘트와의 적합성에 관한 연구)

  • Kim, Do-Wan;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.493-504
    • /
    • 2005
  • This study was performed to investigate the compatibility between 4 dentin adhesives and 4 resin luting cements. Dentin adhesives used in this study were All-Bond 2 (Bisco Inc., Schaumbrug, IL, USA), Clearfil SE-Bond (Kuraray Medical Inc, Osaka, Japan), Prompt L-Pop (3M Dental Products, St. Paul, MN, USA), One-Up Bond F (Tokuyama corp., Tokyo, Japan) Resin luting cements used in this study were Choice (Bisco Inc., Schaumbrug, IL, USA), Panavia F (Kuraray Medical Inc, Osaka, Japan), RelyX ARC (3M Dental Products, St. Paul, MN, USA) Bistite II DC (Tokuyama corp., Tokyo, Japan). Combination of each dentin adhesive and corresponding resin cement was made to 16 experimental groups. Flat dentin surfaces was created on mid-coronal dentin of extracted mandibular third molars, then dentin surface was polished with 320-grit silicon carbide abrasive papers. Indirect resin composite block (Tescera, Bisco) was fabricated. Its surface for bonding to tooth was polished with silicon carbide abrasive papers Each dentin adhesive was treated on tooth surface and resin composite overlay were luted with each resin cement. Each bonded specimen was poured in epoxy resin and sectioned occluso-gingivally into 1.0mm thick slab, then further sectioned into $1.0{\times}1.0mm^2$ composite-dentin beams. Microtensile bond strength was tested at a crosshead speed of 1.0mm/min. The data were analysed by one-way ANOVA and Duncan's multiple comparison tests The results of this study were as follows, 2-step self-etching dentin adhesive which has additional bonding resin is more comparison than tests. self-etching dentin adhesive.

The Impact of the Morphological Characteristics of Leaves on Particulate Matter Removal Efficiency of Plants

  • Son, Deokjoo;Kim, Kwang Jin;Jeong, Na Ra;Yun, Hyung Gewon;Han, Seung Won;Kim, Jeongho;Do, Gyung-Ran;Lee, Seon Hwa;Shagol, Charlotte C.
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.551-561
    • /
    • 2019
  • This study was conducted to find out differences in the removal efficiency of particulate matter (PM) depending on the type of plants and the morphological characteristics of leaves. A total of 12 plants were used, with three plants selected for each type of leaves (big leaf, small leaf, compound leaf, needle leaf). We measured the removed amount of PM10 and PM2.5, the structure of the abaxial leaf surface, and the weight of the wax layer of each plant. Plants with the high removal efficiency of PM included Pachira aquatica Aubl., Ardisia crenata, and Dieffenbachia 'Marianne', and plants with the low removal efficiency included Nandina domestica Thunb, Schefflera arboricola, and Quercus dentata. The abaxial leaf surface having a high removal efficiency of PM had many large wrinkles, and the abaxial leaf surface having a medium removal efficiency was flat and smooth. On the other hand, there were many fine hairs on the abaxial leaf surface with a low removal efficiency. According to the plant leaf type, the PM10 removal efficiency of plants with needle leaves was about three times higher than that of other plants. In particular, the wax layer of conifers weighed 6-24 times higher than those of other plants. The stomata of conifers were evenly distributed on the adaxial and abaxial leaf surfaces; however, the stomata of Sciadopitys verticillata appeared in the form of papillae unlike general stomata. Therefore, the removal efficiency of PM varied depending on the macro-, and micro-morphological characteristics of plant leaves such as the structure of the abaxial leaf surface, and the weight of the wax layer. Based on this research, selecting plants that are effective in reducing PM in consideration of the plant type and leaf characteristics will improve indoor air quality and decrease exposure of PM to human body.

A study on landforms in Gosung, Gangwon province (강원도 고성 일대의 지형 경관에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.65-81
    • /
    • 2011
  • The landforms based on granite and basalt in Gosung, Gangwon province were analysed. Some part of this area experienced volcanic activities while most of the area was experiencing erosion of weathered mantle(saprolites) of mesoic granites during cenozoic period. Two different lithologies affect the mode of landscape evolution. The basalt covers the mountain tops as a 'cap rock' with flat surfaces. It shows relatively fresh rock surface with cliff or steep slops at the boundary with weathered granite. The blocks detached from the cliff accumulated at the foot of the cliff(talus) or moved and filled the valley(block streams). These debris slopes cover the deeply weathered granites. In the case of Oeum Mt. and Duibaekjae, the number of point of origin of the basalt flow is not clear. The orientation of blocks from block stream coincides with slope aspects and it can be assumed that the bolcks were moved by solifluction. The landscape change of the block streams are dominated by removal of weathered material from beneath of the valley rather than removal of bedrock blocks themselves.

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS (Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향)

  • Oh, Eun-Hwa;Choi, Kyoung-Kyu;Kim, Jong-Ryul;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.