• Title/Summary/Keyword: Flask-shaking

Search Result 64, Processing Time 0.028 seconds

Molecular Cloning and Expression of Grass Carp MyoD in Yeast Pichia pastoris

  • Wang, Lixin;Bai, Junjie;Luo, Jianren;Chen, Hong;Ye, Xing;Jian, Qing;Lao, Haihua
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2007
  • MyoD, expressed in skeletal muscle lineages of vertebrate embryo, is one of muscle-specific basic helix-loop-helix (bHLH) transcription factors, which plays a key role in the determination and differentiation of all skeletal muscle lineages. In this study, a cDNA of grass carp MyoD was cloned and characterized from total RNA of grass carp embryos by RT-PCR. The full-length cDNA of grass carp MyoD is 1597 bp. The cDNA sequence analysis reveals an open reading frame of 825 bp coding for a protein of 275 amino acids, which includes a bHLH domain composed of basic domain (1-84th amino acids) and HLH domain (98-142th amino acids), without signal peptide. Then the MyoD cDNA of grass carp was cloned to yeast expression vector pPICZ$\alpha$A and transformed into P. pastoris GS115 strain, the recombinant MyoD protein with a molecular weight of about 31KD was obtained after inducing for 2d with 0.5% methanol in pH 8.0 BMGY medium, and the maximum yield was about 250 mg/L in shaking-flask fermentation. The results were expected to benefit for further studies on the crystal structure and physiological function of fish MyoD.

Proliferation of Tricholoma matsutake Mycelial Mats in Pine Forest Using Mass Liquid Inoculum

  • Lee, Won-Ho;Han, Sang-Kuk;Kim, Beom-Seok;Shrestha, Bhushan;Lee, Soo-Yong;Ko, Cheol-Soon;Sung, Gi-Ho;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.35 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Two isolates of Tricholoma matsutake T-008 and T-034, preserved in Entomopathogenic Fungal Culture Collection (EFCC) of Korea, were used in the present study. The isolates had 100% Bootstrap homology with Tricholoma matsutake U62964 and T. matsutake AB188557 and AF309538 preserved in Gene Bank of NCBI. Mycelial growth of T. matsutake was highest in TMM and MYA at $25^{\circ}C$. The highest dry wt. of mycelium was obtained after 65 days of culture, when 6 mycelial discs were inoculated in 100 ml of broth in 250 ml shaking flask. Mycelial mats were observed in clumped condition at the inoculation sites of pine forest after two weeks of inoculation. After 5 months of inoculation, mycelia mats were observed growing inside soil and walls of a few inoculation sites, while mycelial mats growth up to $5{\sim}8$ cm were observed in the roots of pine tree after 6 months. The survival rate of the inoculum was about 40% of the total inoculation sites. The survival rate was found below 20% when the mycelium was inoculated in the summer. The reasons for low survival rates of the mycelium were mainly due to dry season and the soil-borne small animals such as earthworm and mole. After one year of inoculation, no external difference was observed between the artificially inoculated mycelia and the naturally existing mycelia of T. matsutake. The present study showed that fruiting bodies of T. matsutake could be produced by artificial inoculation under the appropriate environmental conditions.

Studies on the production and purification of an extracellular protease from a nonpigmenting Serration sp. (Nonpigmenting Serratia sp.에서 균체의 단백질 분해효소의 생성과 정제에 관한 연구)

  • Kim, Soung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.321-327
    • /
    • 1985
  • Cultivation conditions for the production of extracellular alkaline protease by a nonpiamentation Serratia sp. and purification of the enzyme were studied. The maximum enzyme level was obtained at the beginning of stationary phase when the organism was cultured on brain heart infusion medium at $25^{\circ}C$ under aeration (gyratory shaking, 180 cycles/min). The enzyme was purified about 100 fold with 16.5% yield by ammonium sulfate precipitation, ammonium sulfate fractionation followed by DEAE-cellulose chromatography (1st and 2nd). The purified enzyme moved as a single symmetrical peak in the analytical ultracentrifuge. The enzyme demonstrated its maximum activity at pH 8.5-9.0 and 4$0^{\circ}C$ when vitamin-free casein was used as a substrate.

  • PDF

Bioleaching of valuable metals from electronic scrap using fungi(Aspergillus niger) as a microorganism (곰팡이균(Aspergillus niger)을 이용(利用)한 전자스크랩중 유가금속(有價金屬)의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.24-31
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Fe, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in the presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Fe, Co and Ni from electronic scrap, chemical leaching using organic acid(Citric acid and Oxalic acid) was accomplished. At the electronic scrap concentration of 50 g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pb and Sn were leached about 15-35%. Ni and Fe were detected in the leachate less than 10%.

Optimal Culture Conditions for Transformed Root Growth and Trichosanthin Formation in Trichosanthes kirilowii Max. (하늘타리 형질전환근의 생장 및 Trichosanthin의 생합성을 위한 최적화)

  • Hwang, Sung-Jin;Na, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 2007
  • Transformed hairy roots were induced from in vitro grown plantlets of Trichosanthes kirilowii by infection with Agrobacterium rhizogenes strain ATCC15834. Transformed hairy roots exhibited active growth with high branching of roots on plant growth regulators-free medium. Cloned line (TR-03) of hairy root was tested for its growth and extracellular protein accumulation in medium under various culture conditions. Among the culture media tested, a full-strength MS medium had a pronounced effect on root biomass and extracelluar protein accumulation in medium. The maximum root biomass (2.4 g DRW/flask) and extracellular total protein contents $(28.3ug/m\ell)$ in medium was obtained at inoculum size of 2 g (FRW) and in MS medium supplemented with 4% sucrose. In addition, the optimal shaking speed for root growth and extracellular protein accumulation in medium were 100 rpm. The total extracellualr protein concentration reached a maximum of $28.3ug/m\ell$ at 4 weeks and decreased thereafter. Protein translation inhibitory activity was observed in culture broths and reached levels of 21.3 unit. These studies demonstrate that the transformed hairy roots can be utilized for the in vitro production of ribosome-inactivating proteins.

Improved Purification of Thermophilic FoF1-ATP Synthase c-Subunit Rings and Solid-State NMR Characterization of Them in Different Lipid Membranes

  • Bak, Suyeon;Kang, Su-Jin;Suzuki, Toshiharu;Yoshida, Masasuke;Fujiwara, Toshimichi;Akutsu, Hideo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • ATP synthase produces ATP, a major energy source for metabolic processes in organisms, from ADP and inorganic phosphate in cellular membranes. ATP synthase is known as a rotary motor, in which the c-subunit ring functions as a rotor. In this work, we have tried to develop a more general preparation procedure of thermophilic $F_oc$-ring ($TF_oc$-ring) for NMR measurements. The expression of $TF_oF_1$ is easily affected by various experimental conditions such as temperature, shape and size of a flask, a volume of medium, and shaking rate of an incubator. Accordingly, we have tried to optimize the expression conditions of $TF_oF_1$. $TF_oc$-rings were purified from $TF_oF_1$ according to a reported method. We modified purification procedures to improve purity and yield of $TF_oc$. On top of them, we found a new combination of detergents for the purification at anion-exchange column chromatography. To examine the effect of lipid environments on the structure, the $TF_oc$-rings were reconstituted into two kinds of lipid bilayers, namely, saturated and unsaturated lipid ones. Then, we have compared characteristics of the $TF_oc$-ring structures in these membranes with solid-state NMR.

Lipase Production by Limtongozyma siamensis, a Novel Lipase Producer and Lipid Accumulating Yeast

  • Varunya Sakpuntoon;Savitree Limtong;Nantana Srisuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1531-1541
    • /
    • 2023
  • Lipase is a well-known and highly in-demand enzyme. During the last decade, several lipase optimization studies have been reported. However, production costs have always been a bottleneck for commercial-scale microbial enzyme production. This research aimed to optimize the conditions for lipase production by Limtongozyma siamensis DMKU-WBL1-3 via a One-Factor-At-a-Time (OFAT) approach combined with statistical methods while using a low-cost substrate. Results suggest that low-cost substrates can be substituted for all media components. An optimal medium was found, using response surface methodology (RSM) and central composite design (CCD), to consist of 0.50% (w/v) sweet whey, 0.40% (w/v) yeast extract (food grade), and 2.50% (v/v) palm oil with the medium pH adjusted to 4 under shaking flask cultivation. From an economic point of view, this work was successful in reducing production costs while increasing lipase productivity. The medium costs were reduced by 87.5% of the original cost while lipase activity was increased by nearly 6-fold. Moreover, lipase production was further studied in a 2-L stirred-tank fermentor. Its activity was 1,055.6 ± 0.0 U/ml when aeration and agitation rates were adjusted to 1 vvm and 170 rpm, respectively. Interestingly, under this optimal lipase production, the yeast showed accumulated lipids inside the cells. The primary fatty acid is a monounsaturated fatty acid (MUFA) that is typically linked to health benefits. This study hence reveals promising lipase production and lipid accumulation by L. siamensis DMKU-WBL1-3 that are worthy of further study.

Characterization of Endochitosanases-Producing Bacillus cereus P16

  • Jo, Yu-Young;Jo, Kyu-Jong;Jin, Yu-Lan;Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Kim, Tae-Hwan;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.960-968
    • /
    • 2003
  • A bacterial isolate showing a strong endochitosanase activity was isolated from soil and then characterized. The isolate was identified and designated as Bacillus cereus P16, based on morphological and biochemical properties, assimilation tests, cellular fatty acids pattern, along with 16S rRNA gene sequence. The optimized medium for producing extracellular chitosanase in a batch culture contained 1% tryptone, 0.5% chitosan, and 1% NaCl (pH 7.0). Powder chitosan and tryptone served the best as carbon and nitrogen sources, respectively, for the chitosanase production. Chitosanase activity was the highest when culture was completed at $37^{\circ}C$ among various temperatures ($20-42^{\circ}C$) tested in a shaking incubator (200 rpm). The levels of chitosanase activity in the culture fluid were 2.0 U/ml and 3.8 U/ml, respectively, when incubated in a flask for 60 h and in a jar fermenter for 24 h. The culture supernatant showed a strong liquefying activity on the soluble chitosan. The viscosity of 1% chitosan solution, that was incubated with the culture supernatant, was rapidly decreased, suggesting the secretion of endochitosanolytic enzymes by P16. The culture fluid revealed six endo-type chitosanase isozymes, two major (38 and 45 kD), and four minor (54, 65, 82, and 96 kD) forms by staining profile. The crude enzymes were very stable, and full activity was maintained for 4 weeks at $4^{\circ}C\;or\;-20^{\circ}C$ in the culture supernatant, suggesting a highly desirable stability rate for making an industrial application of the crude enzymes. The supernatant also cleaved the insoluble chitosan powder, but the hydrolysis rate was much lower. The enzymic degradation products of chitosan contained $(GlcN)_n$ (n=2-8). The concentration of chitosan in the reaction mixture of the crude enzyme affected the chitooligosaccharides composition of the hydrolysis products. When the higher concentration of chitosan was used, the higher degree of polymerized chitooligosaccharides were produced. By comparison with other commercial chitosanase preparations, P16 was indeed found to be a valuable enzyme source for industrial production of chitooligosaccharides from chitosan.

Immobilization of Bacillus sp. Strains, Catalase Producing Bacteria and Their Hydrogen Peroxide Removal Characteristics (카탈라제를 생산하는 고초균 (Bacillus sp.)의 고정화 및 과산화수소 분해 특성)

  • Han, Kyung-Ah;Jang, Yun-Hee;Rhee, Jong-Il
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.520-526
    • /
    • 2010
  • In this work we have investigated the production of catalase from Bacillus sp. strains, which were screened and identified from soil. These strains were cultivated in shaking flasks with tryptic soy broth (TSB) at $30^{\circ}C$ and 200 rpm. Effects of the temperature and pH on the stability of the native catalase and whole cell viability were studied in the temperature range of $25-60^{\circ}C$ and the pH range of 7-13. Korean natural zeolite was added to culture medium and mixed with microorganisms for 24 hours. The native catalase maintained its activity over $50^{\circ}C$. The enzyme acitiviy of the catalase from Bacillus flexus BKBChE-3 was highest among the Bacillus sp. strains studied. Bacillus flexus BKBChE-3 and immobilized Bacillus cells have survived under extreme conditions of over $50^{\circ}C$ and pH 12. 60 mL of 10.5 mM $H_2O_2$ solution were entirely removed within 1 hour with catalase produced from Bacillus sp. on the flask. When Bacillus cells were immobilized on Korean natural zeolite, colony forming unit of Bacillus flexus BKBChE-3 was increased and high efficiency of hydrogen peroxide removal was observed.

Screening of Antimicrobial Activity Compounds from Korea Ginseng Fine Root (고려인삼의 세근을 이용한 항균성 물질 탐색)

  • Kim, Ah-Reum;Lee, Myung-Suk
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1244-1250
    • /
    • 2011
  • The study was performed to evaluate the antibacterial and antiviral activities of ginseng fine root in order to search for antibacterial substances. Among 8 kinds of fermentation strains, Lactobacillus plantarum was selected based on viable cell count and antibacterial activities during incubation. Optimum conditions of ginseng fine root fermentation for L. plantarum were incubation at $35^{\circ}C$ for 48 hr in 5% ginseng fine root broth. That methanolic extract of fermented ginseng fine root broth was observed to be antibacterial and have antiviral activities. The results of paper disc method of non-fermented extract and fermented extract measured against E. coli was 11 mm and 20 mm, S. aureus was 15 mm and 22 mm, respectively. Shaking flask method was observed to inhibit the growth E. coli and S. aureus in fermented extract by 99.9%. However, antiviral activity of Feline calicivirus (FCV) was mostly activated. Fermented extract was used to investigate the compositional changes of ginsenosides on HPLC analysis. By fermentation, ginsenoside Rg1, Re and Rd were increased, with Rd showing a significant increase of 50 ${\mu}g/g$. These results suggest that ginseng fine root extract is a useful resource.