• Title/Summary/Keyword: Flash Point

Search Result 305, Processing Time 0.025 seconds

Measurement of Flash Point for Binary Mixtures of Methanol, Ethanol, 1-propanol and Toluene (Methanol, Ethanol, 1-propanol 그리고 Toluene 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;Kim, Seon Woo;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The flash point is one of the most important parameters used to characterize the ignition and explosion hazards of liquids. Flash points were measured for several binary systems containing toluene, including {methanol+toluene}, {ethanol+toluene}, and {1-propanol+toluene}. Experiments were performed according to the standard test method using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following $G^E$ models: Wilson, NRTL, and UNIQUAC. The average absolute deviation between the predicted and measured lower flash point was less than 1.69 K.

The Measurement of Fire and Explosion Properties of n-Hexadecane (노말헥사데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Point Using Setaflash Apparatus for n-Alcohols (Setaflash 장치를 이용한 노말 알코올류의 상부인화점 측정에 의한 폭발상한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UEL), the upper flash point of n-alcohols were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation using the experimental upper flash point are usually lower than the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

Measurement of Lower Flash Point for Ternary Mixture, n-Nonane+n-Decane+n-Dodecane System (삼성분계 혼합물인 n-Nonane+n-Decane+n-Dodecane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important indicators of the flammability of liquid solutions. The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. In this study the flash points of ternary liquid solutions, n-nonane+n-decane+n-dodecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and empirical equation. The calculated data by empirical equation described the measured values more effectively than those calculated by Raoult's law.

Flash Point of p-xylene and Epoxy Resins Mixtures (파라크실렌과 에폭시수지 혼합물의 인화점에 관한 연구)

  • 윤희승;강민호;하동명;정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.78-82
    • /
    • 2000
  • The flash point is an important property and hazardous index of a flammable liquid. The flash points are used by virtually all the environmental, health, and safety organizations in both government and industry to classify flammable liquids for safety and transportation regulations. The basics of all flash points behavior are concerned with the vapor pressure and explosive limits. The flash points of pure components and the mixture of solvents can be calculated with the use of the laws of Raoult, Dalton and Le Chatelier. In this paper, experimentally determined lower flash points of a p-xylene and epoxy resin system were compared with the calculated values by using Raoults law. Calculated lower flash points were in reasonable agreement with the observed values.

  • PDF

Measurement of Fire Point and Flash Point for Alcohols Using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 알콜류의 인화점 및 연소점 측정)

  • Ha Dong-Myeong;Lee Sung-Jin;Song Young-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.69-73
    • /
    • 2004
  • The flash point is one of the most important combustible properties used to determine the potential for the fire and explosion hazards of industrial material and the fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash point and fire point were measured to present raw data of the flammable risk assessment for alcohols, using Tag open-cup apparatus(ASTM D 1310-86). The measured values were compared with the calculated values based on 0.78 times stoichiometric concentration. The values calculated by the proposed equations were in good agreement with the measured values.

The Measurement of Combustible Characteristics of n-Undecane (노말언데칸의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • For the safe handling of n-undecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-undecane were calculated. The lower flash points of n-undecane by using closed-cup tester were measured $59^{\circ}C$ and $67^{\circ}C$. The lower flash points of n-undecane by using open cup tester were measured $67^{\circ}C$ and $72^{\circ}C$, respectively. The fire point of n-undecane by using Cleveland open cup tester was measured $74^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-undecane. The experimental AIT of n-undecane was $198^{\circ}C$. The estimated lower and upper explosion limit by using measured lower flash point $59^{\circ}C$ and upper flash point $83^{\circ}C$ for n-undecane were 0.65 Vol.% and 2.12 Vol.%.

The Measurement and Estimation of Minimum Flash Point Behavior for Binary Mixtures Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 이성분계 혼합물의 최소인화점 현상의 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • The flash points for the systems, ethlybenzene+n-butanol and ethlybenzene+n-hexanol, were measured by using Tag open-cup tester (ASTM D1310-86). These binary mixtures exhibited MFPB (minimum flash point behavior), which leads to the minimum on the flash point vs composition curve. The experimental data were compared with the values calculated by the Raoult's law, the UNIQUAC equation and the NRTL equation. The calculated values based on the UNIQUAC and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that the UNIQUAC and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for nonideal solution such as the ethlybenzene+n-butanol and ethlybenzene+n-hexanol systems. And the predictive curve of the flash point prediction model based on the NRTL equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC equation.

  • PDF

Measurement of Flash Points for n-hexanol+n-butyric acid and n-butanol+propionic acid by Seta-flash Closed Cup Method (Seta-flash 밀폐식 방법에 의한 n-hexanol+n-butyric acid 계와 n-butanol+propionic acid 계의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.76-80
    • /
    • 2014
  • The flash point is one of the most important physical properties used to determine the fire hazard of flammable liquid mixture and defined as the lowest temperature at which a liquid produces sufficient vapor to form a combustible mixture with air. The main purpose of this paper is to measure and predict the flash point of binary flammable miscible mixtures. The flash points for n-hexanol+n-butyric acid and n-butanol+propionic acid, were measured by using Seta-flash closed cup method. The experimentally derived data were correlated with the binary interaction parameters of the van Laar and NRTL equations through the optimization method. The flash points estimated by these correlations were compared with those calculated by the method based on Raoult's law. The optimization method were found to be better than the method based on the Raoult's law.

The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS (MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.