• Title/Summary/Keyword: Flash Point

Search Result 306, Processing Time 0.022 seconds

Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa (Toluene, Methylcyclohexane, n-heptane 그리고 Ethylbenzene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • Flammable substances are used in laboratories and industrial process. The flash point (FP) is one of the most important physical properties used to determine the potential for characterizing the fire and explosion hazard of liquids. The FP data at 101.3 kPa were measured for the binary systems {toluene+ethylbenzene}, {methlycyclohenxane+ethylbenzene} and {n-heptane+ ethylbenzene}. The experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured FPs were compared with the values predicted using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The average absolute deviation between the predicted and measured lower FP was less than 1.74 K.

A Study of Characteristics such as Spontaneous Ignition, Flash Point and Explosion Behavior of Methyl Ethyl Ketone Peroxide in ender to Determine its Hazardousness (Methyl Ethyl Ketone Peroxide의 위험성을 판단하기 위한 자연발화, 인화점 및 폭발거동에 관한 기초 연구)

  • Jung, Doo-Kyun;Choi, Jae-Wook;Lee, In-Sik;Lim, Woo-Sub;Kim, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.78-83
    • /
    • 2005
  • In this study, the evaluate characteristics of fire and explosion of MEK-PO are subjected to spontaneous ignition, flash point and explosion hazard. The minimum ignition temperature and instantaneous ignition temperature for MEK-PO were $188.5^{\circ}C\;and\;230^{\circ}C\;at\;225{\mu}L$. In addition The flash point for MEK-PO was obtained at $49^{\circ}C$. Furthermore, the maximum explosion pressure and the maximum explosion pressure rising velocity: using MCPVT (mini cup pressure vessel tester) were $10.82kgf/cm^2\;and\;33.72kgf/cm^2{\cdot}s$.

A Study on the Optimal Flash-Point of WDF Production (유화유 생산의 적정 인화점에 관한 연구)

  • Lee, Jin;Kim, Hwaseong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.310-314
    • /
    • 2020
  • Although waste oil derived fuel (WDF) production technology was developed under a government initiative ~10 years ago, it became stagnant owing to the small size of participating companies, residents' rejection of foul odor, and the nature of the technology for recycling waste that was avoided. However, this subject is under the spotlight again because of recent developments, such as garbage crisis. In particular, plastic is the most difficult waste to dispose of, with more than 4 million tons of plastic waste produced every year according to statistics from the Ministry of Environment. The most effective method for treating plastic waste is to produce WDF through low temperature thermal decomposition. The WDF includes several volatile ingredients that mostly limit the use of fuel for boilers, owing to safety concerns. In particular, flash point is legally stipulated because of secondary contamination in the distribution process and the risk of fire and explosion. It is required that external shipments (distribution) should be maintained in the range of at least 30~60℃ (excluding explosion prevention facilities) for diesel power generation. Therefore, this study seeks to find the flash point that is best suited to WDFs produced from plastic waste.

Prediction of Upper Explosion Limits (UEL) of Acids and Ketones by Using Setaflash Tester (Setaflash 장치를 이용한 산류와 케톤류의 폭발상한계 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits (UEL) for acids and ketones, the upper flash point of these were measured under the VLE (vaporliquid equilibrium) state by using Setaflash closed cup tester (ASTM D3278). The UELs calculated by Antoine equation by using the experimental upper flash point are usually lower than the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

Estimation of the Flash Point for n-Pentanol + n-Propanol and n-Pentanol + n-Heptanol Systems by Multiple Regression Analysis (다중회귀분석법을 이용한 n-Pentanol + n-Propanol계 및 n-Pentanol + n-Heptanol계의 인화점 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, the flash points of two flammable binary mixtures, n-pentanol + n-propanol and n-pentanol + n-heptanol systems were measured using a Seta flash closed cup tester. The flash point was estimated using the methods based on Raoult's law and multiple regression analysis. The measured flash points were also compared with the predicted flash points. The absolute average errors (AAE) of the results calculated by Raout's law were $1.3^{\circ}C$ and $1.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. The absolute average errors of the results calculated by multiple regression analysis were $0.4^{\circ}C$ and $0.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. According to the AAE, the calculated values based on multiple regression analysis were better than those based on Raoult's law.

The Calculation of Flash Point for n-Nonane+n-Decane+n-Tridecane System by Raoult's Law and Multiple Regression Analysis (라울의 법칙과 다중회귀분석법에 의한 n-Nonane+n-Decane+n-Tridecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • The flash point is one of the most important properties to characterize fire and explosion hazard of flammable liquid mixture. In this paper, the flash points of ternary liquid mixture, n-nonane+n-decane+n-tridecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and multiple regression analysis. The absolute average errors(AAE) of the results calculated by Raoult's law is $0.6^{\circ}C$. The absolute average errors of the results calculated by multiple regression analysis is $0.4^{\circ}C$. As can be seen from AAE, the calculated values based on multiple regresstion analysis were found to be better than those based on Raoult's law.

The Measurement and Prediction of Combustible Properties for Ethylbenzene (에틸벤젠의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • For the safe handling of ethylbenzene, this study was investigated the explosion limits of ethylbenzene in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of ethylbenzene by using Setaflash closed-cup and Pensky-Martens closed-cup testers were experimented $20^{\circ}C$ and $22^{\circ}C$, respectively. The lower flash points ethylbenzene by using Tag and Cleveland open cup testers were experimented $25^{\circ}C$ and $28^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for ethylbnezene. The experimental AIT of ethylbenzene was $430^{\circ}C$. The calculated LEL and UEL by using the measured lower flash point and upper flash point were 0.93 Vol.% and 7.96 Vol.%, respectively.

A Study on Flash Points of Flammable Substances- 1. Pure Substances and A Mixture of Binary System - (가연성물질의 인화점에 관한 연구- 1. 순수성분 및 2성분계 혼합물-)

  • 하동명;목연수;최재욱
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • The flash point is generally used as a hazardous index of fire and explosion of a flammable liquid. A classification of the flash points is important for the safe handling of flammable liquids such as solvent mixtures. The flash points of pure substances and solvent mixtures can be c calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and a activity coefficient models. In this study, experimentally determined lower and upper flash points w were compared with the calculated values by using Raoult's law and van Laar equation. The flash points of pure substances were in agreement with the calculated values by vapor pressure and e explosive limits. Also, the lower flash points of M.E.K(methylethylketone)-toluene system were i in agreement with the predicted values by Raoult’s law, and the upper flash points were in a agreement with the predicted values by van Laar equation. By means of this methodology, it is possible to evaluate reliability of expermental data of the flash points of the flammable mixtures.

  • PDF

Measurement and Prediction of the Flash Points and the Fire Points for the Flammable Binary Mixtures Using Open-cup Apparatus (개방식 장치를 이용한 가연성 2 성분계 혼합물의 인화점 및 연소점 측정 및 예측)

  • Ha, Doo-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.47-52
    • /
    • 2007
  • The flash points and the fire points for the m-xylene+n-propionic acid and n-butanol+n-pentanol systems were measured by using Tag open-cup apparatus(AS1M D 1310-86). The experimental flash points of two binary systems were compared with the values calculated by the Raoult's law, Van Laar equation and Wilson equation. The calculated values based on the Raoult's law on m-xylene+n-propionic acid system were found to be better than those based on Van Laar and Wilson equations. The calculated values based on Van Laar equation on n-butanol+n-pentanol system were found to be better than those based on the Raoult's law and Wilson equation. The the fire points for the m-xylene+n-propionic acid system were about $7{\sim}8^{\circ}C$ above the flash points. In the case of n-butanol+n-pentanol system, the flash points and the fire points had been found to be identical.

The Measurement of Lower Flash Points For Binary Mixtures (이성분계 혼합물의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The flash point is an important indicator of the flammability of a chemical. In this study, the flash points for the n-propanol+n-butanol and n-propanol+acetic acid systems were measured by Tag open-cup apparatus. The experimental data were compared with the values calculated by the Raoult's law and optimization method based on van Laar and UNIQUAC equations. The calculated values by optimization method were found to be better than those based on the Raoult's law.