• Title/Summary/Keyword: Flash Memory Storages

Search Result 29, Processing Time 0.022 seconds

Design and Implementation of Flash Translation Layer with O(1) Crash Recovery Time (O(1) 크래시 복구 수행시간을 갖는 FTL의 설계와 구현)

  • Park, Joon Young;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.639-644
    • /
    • 2015
  • The capacity of flash-based storage such as Solid State Drive(SSD) and embedded Multi Media Card(eMMC) is ever-increasing because of the needs from the end-users. However, if a flash-based storage crashes, such as during power failure, the flash translation layer(FTL) is responsible for the crash recovery based on the entire flash memory. The recovery time increases as the capacity of the flash-based storages increases. We propose O1FTL with O(1) crash recovery time that is independent of the flash capacity. O1FTL adopts the working area technique suggested for the flash file system and evaluates the design on a real hardware platform. The results show that O1FTL achieves a crash recovery time that is independent of the capacity and the overhead, in terms of I/O performance, and achieves a low P/E cycle.

Search Performance Improvement of Column-oriented Flash Storages using Segmented Compression Index (분할된 압축 인덱스를 이용한 컬럼-지향 플래시 스토리지의 검색 성능 개선)

  • Byun, Siwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.393-401
    • /
    • 2013
  • Most traditional databases exploit record-oriented storage model where the attributes of a record are placed contiguously in hard disk to achieve high performance writes. However, for search-mostly datawarehouse systems, column-oriented storage has become a proper model because of its superior read performance. Today, flash memory is largely recognized as the preferred storage media for high-speed database systems. In this paper, we introduce fast column-oriented database model and then propose a new column-aware index management scheme for the high-speed column-oriented datawarehouse system. Our index management scheme which is based on enhanced $B^+$-Tree achieves high search performance by embedded flash index and unused space compression in internal and leaf nodes. Based on the results of the performance evaluation, we conclude that our index management scheme outperforms the traditional scheme in the respect of the search throughput and response time.

The Effect of Absorbing Hot Write References on FTLs for Flash Storage Supporting High Data Integrity (데이터 무결성을 보장하는 플래시 저장 장치에서 잦은 쓰기 참조 흡수가 플래시 변환 계층에 미치는 영향)

  • Shim, Myoung-Sub;Doh, In-Hwan;Moon, Young-Je;Lee, Hyo-J.;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.336-340
    • /
    • 2010
  • Flash storages are prevalent as portable storage in computing systems. When we consider the detachability of Flash storage devices, data integrity becomes an important issue. To assure extreme data integrity, file systems synchronously write all file data to storage accompanying hot write references. In this study, we concentrate on the effect of hot write references on Flash storage, and we consider the effect of absorbing the hot write references via nonvolatile write cache on the performance of the FTL schemes in Flash storage. In 80 doing, we quantify the performance of typical FTL schemes for workloads that contain hot write references through a wide range of experiments on a real system environment. Through the results, we conclude that the impact of the underlying FTL schemes on the performance of Flash storage is dramatically reduced by absorbing the hot write references via nonvolatile write cache.

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.

2WPR: Disk Buffer Replacement Algorithm Based on the Probability of Reference to Reduce the Number of Writes in Flash Memory

  • Lee, Won Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, we propose an efficient disk buffer replacement policy which improves hit ratio and reduces writing operations of flash based storages. The flash based storage has many advantages, including a small form factor, non-volatility and high reliability, but there are problems caused by own limitations, like not-in-place update, short life cycle and asymmetric I/O latencies. To redeem these problems, this paper proposes the write weighted probability of reference(2WPR) policy. 2WPR policy predicts re-referencing probability and calculates localities of each page. Furthermore, by weighting write operations to every pages, 2WPR can reduce write operations to flash based storage. In addition, we can improve the performance with higher hit ratio and reduce the number of write operations and consequently shorten the latencies of each operation. The results show that our policy provides improvements of up to 10% for the hit ratio with the reduction of up to 5% for the flash writing operation compared with other policies.

A Hetero-Mirroring Scheme to Improve I/O Performance of High-Speed Hybrid Storage (고속 하이브리드 저장장치의 입출력 성능개선을 위한 헤테로-미러링 기법)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4997-5006
    • /
    • 2010
  • A flash-memory-based SSDs(Solid State Disks) are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional storage management schemes based on HDD(Hard Disk Drive) and RAID(Redundant array of independent disks) due to the relatively slow or freezing characteristics of write operations of SSDs, as compared to fast read operations. In order to achieve this goal, we propose a new storage management scheme called Hetero-Mirroring based on traditional HDD mirroring scheme. Hetero-Mirroring-based scheme improves RAID-1 operation performance by balancing write-workloads and delaying write operations to avoid SSD freezing. Our test results show that our scheme significantly reduces the write operation overheads and freezing overheads, and improves the performance of traditional SSD-RAID-1 scheme by 18 percent, and the response time of the scheme by 38 percent.

Performance Analysis of Flash Memory SSD with Non-volatile Cache for Log Storage (비휘발성 캐시를 사용하는 플래시 메모리 SSD의 데이터베이스 로깅 성능 분석)

  • Hong, Dae-Yong;Oh, Gi-Hwan;Kang, Woon-Hak;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • In a database system, updates on pages that are made by a transaction should be stored in a secondary storage before the commit is complete. Generic secondary storages have volatile DRAM caches to hide long latency for non-volatile media. However, as logs that are only written to the volatile DRAM cache don't ensure durability, logging latency cannot be hidden. Recently, a flash SSD with capacitor-backed DRAM cache was developed to overcome the shortcoming. Storage devices, like those with a non-volatile cache, will increase transaction throughput because transactions can commit as soon as the logs reach the cache. In this paper, we analyzed performance in terms of transaction throughput when the SSD with capacitor-backed DRAM cache was used as log storage. The transaction throughput can be improved over three times, by committing right after storing the logs to the DRAM cache, rather than to a secondary storage device. Also, we showed that it could acquire over 73% of the ideal logging performance with proper tuning.

Shadow Recovery for Column-based Databases (컬럼-기반 데이터베이스를 위한 그림자 복구)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2784-2790
    • /
    • 2015
  • The column-oriented database storage is a very advanced model for large-volume data transactions because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly data warehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. In this research, we propose a new transaction recovery scheme for a column-oriented database environment which is based on a flash media file system. We improved traditional shadow paging schemes by reusing old data pages which are supposed to be invalidated in the course of writing a new data page in the flash file system environment. In order to reuse these data pages, we exploit reused shadow list structure in our column-oriented shadow recovery(CoSR) scheme. CoSR scheme minimizes the additional storage overhead for keeping shadow pages and minimizes the I/O performance degradation caused by column data compression of traditional recovery schemes. Based on the results of the performance evaluation, we conclude that CoSR outperforms the traditional schemes by 17%.

A Design and Implementation for a Reliable Data Storage in a Digital Tachograph (디지털 자동차운행기록계에서 안정적인 데이터 저장을 위한 설계 및 구현)

  • Baek, Sung Hoon;Son, Myunghee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • The digital tachograph is a device that automatically records speed and distance of a vehicle, together with the driver's activity and vehicle status at an accident. It records vehicle speed, break status, acceleration, engine RPM, longitude and latitude of GPS, accumulated distance, and so on. European Commission regulation made digital tachographs mandatory for all trucks from 2005. Republic of Korea made digital tachographs mandatory for all new business vehicles from 2011 and is widening the range of vehicles that must install digital tachographs year by year. This device is used to analyze driver's daily driving information and car accidents. Under a car accident that makes the device reliability unpredictable, it is very important to store driving information with maximum reliability for its original mission. We designed and implemented a practical digital tachograph. This paper presents a storage scheme that consists of a first storage device with small capacity at a high reliability and a second storage device with large capacity at a low cost in order to reliably records data with a hardware at a low cost. The first storage device records data in a SLC NAND flash memory in a log-structured style. We present a reverse partial scan that overcomes the slow scan time of log-structured storages at the boot stage. The scheme reduced the scan time of the first storage device by 1/50. In addition, our design includes a scheme that fast stores data at a moment of accident by 1/20 of data transfer time of a normal method.