• Title/Summary/Keyword: Flapping foil

Search Result 14, Processing Time 0.023 seconds

Thrust estimation of a flapping foil attached to an elastic plate using multiple regression analysis

  • Kumar, Rupesh;Shin, Hyunkyoungm
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.828-834
    • /
    • 2019
  • Researchers have previously proven that the flapping motion of the hydrofoil can convert wave energy into propulsive energy. However, the estimation of thrust forces generated by the flapping foil placed in waves remains a challenging task for ocean engineers owing to the complex dynamics and uncertainties involved. In this study, the flapping foil system consists of a rigid NACA0015 section undergoing harmonic flapping motion and a passively actuated elastic flat plate attached to the leading edge of the rigid foil. We have experimentally measured the thrust force generated due to the flapping motion of a rigid foil attached to an elastic plate in a wave flume, and the effects of the elastic plates have been discussed in detail. Furthermore, an empirical formula was introduced to predict the thrust force of a flapping foil based on our experimental results using multiple regression analysis.

Modified thrust empirical formula of a flapping foil by including the effects of azimuth angles

  • Kumar, Rupesh;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.126-135
    • /
    • 2021
  • Wave energy is one of the most available sources of renewable energy in the world. It has been previously proven that the flapping foil can generate thrust forces using energy from the surface waves and an empirical formula was proposed to predict the thrust forces generated by a flapping foil consist of NACA0015 section (Kumar and Shin, 2019a). However, the proposed empirical formula was restricted to the head waves i.e. 0° azimuth angle which was not useful for the flapping foils encountering with oblique and following waves. Therefore, in this study, the thrust empirical formula was modified to include the effects of azimuth angles based on the experimentally obtained data. And the modified empirical equations were validated by the combination of foils experimentally.

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

Numerical Simulation of MIT Flapping Foil Experiment (MIT 요동 익형의 수치해석)

  • Kang, Dong-Jin;Bae, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.777-784
    • /
    • 2000
  • A Navier-Stokes code based on an unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number ${\kappa}-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for the whole experimental domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. The first harmonics of the velocity in the boundary layer shows local peak value inside the boundary layer and also local minimum near the edge of boundary layer. It is intensified as it develops along the blade surface. This is shown to be caused as the unsteadiness inside the boundary layer is being convected at a speed less than the free stream value. It is also shown that there is negligible mixing of the unsteadiness between the boundary layer and the free stream.

NUMERICAL SIMULATION ON FLUID-STRUCTURE INTERACTION OF A TWO-DIMENSIONAL ORBITING FLEXIBLE FOIL (선회하는 2차원 유연 날개의 유체-구조 상호작용 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The hybrid Cartesian/immersed boundary method is applied to simulate fluid-structure interaction of a two-dimensional orbiting flexible foil. The elastic deformation of the flexible foil is modelled based on the dynamic equation of a thin-plate. At each time step, the locations and velocities of the Lagrangian control points on the flexible foil are used to reconstruct the boundary conditions for the flow solver based on the hybrid staggered/non-staggered grid. To test the developed code, the flow fields around a flapping elliptical wing are calculated. The time history of the vertical force component and the evolution of the vorticity fields are compared with recent other computations and good agreement is achieved. For the orbiting flexible foil, the vorticity fields are compared with those of the case without the deformation. The combined effects of the angle of attack and the orbit on the deformation are investigated. The grid independency study is carried out for the computed time history of the deformation at the tip.

Experimental Study of Surge Motion of a Floater using Flapping Foils in Waves (파도에서 플래핑 포일을 적용한 부유체의 서지 운동에 관한 실험적 연구)

  • Sim, Woo-lim;Rupesh, Kumar;Yu, Youngjae;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.211-216
    • /
    • 2019
  • In order to utilize the marine environment in various fields such as renewable energy and offshore plant, it is necessary to utilize the far and deep ocean. However, there is still a limit to overcome and utilize the extreme deep-sea environment. Currently, the mooring system, which is the representative position control method of floating structure, has a structural and economic limit to expand the installation range to extreme deep-sea environment. Research has been conducted to utilize wave energy by developing floater using flapping foil as an alternative for station keeping in the deep sea by University of Ulsan. Based on the research, a model test was conducted for application to actual structures. In this study, we investigate how the floating body with passive flapping foils move in regular waves with different periods and study the condition of the model that can maintain its position within a certain range by overcoming the movement.

Effects of Upstream Wake Frequency on the Unsteady Boundary Layer Characteristics On a Downstream Blade (상류 후류의 발달 주파수가 하류 익형의 비정상 경계층 거동에 미치는 영향)

  • Bae Sang Su;Kang Dong Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.181-186
    • /
    • 1999
  • The effects of the frequency of upstream gust on the unsteady boundary characteristics on a downstream blade was simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds k-e turbulence model to close the momentum equations. The MIT flapping foil experiment set-up is used to simulate the interaction between the upstream wake and a blade. The frequency of the upstream wake is simulated by varying rate of pitching motion of the flapping airfoils. Three reduced frequencies. 3.62. 7.24. and 10.86. are simulated. As the frequency increases, the unsteady fluctuation on the surfaces of the downstream hydrofoil is shown to decrease while the upstream flapper wake has larger first harmonics of y-velocity component. The unsteady vortices are shown to interact with each other and. as a result. the upstream wake becomes undiscernible inside the inner layer. The turbulence kinetic energy shows a similar behavior. Limiting streamlines around the trailing edge of the flapper are shown to conform with the unsteady Kutta condition for a round trailing edge. while limiting streamlines around the trailing edge of the hydrofoil conforms with the unsteady Kutta condition for a sharp edge.

  • PDF

Feasibility Study for Development of New Stationkeeping System (Flapping Foil을 적용한 위치유지시스템 개발을 위한 운동시험)

  • Yu, Young-Jae;Sim, Woo-Lim;Kumar, Rupesh;Kim, Dong-Ju;Shin, Hyun-Kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, experiments with a floater using flapping foils were performed to develop a new station keeping system that can maintain its position in waves without mooring lines. The foils applied to this system generate thrust using wave energy. In this experiment, the motion of the floater was analyzed in three different wave periods. Sixteen foils were attached to the cylindrical floater. The thrust of each foil was controlled by changing its azimuth angle, and three cases were compared. Based on the previous data, we made more precise measurements and found an optimal model for stationkeeping under each wave condition. We verified the potential of this new stationkeeping system using flapping foils, and conclusions were drawn from the results.

A Study on the Unsteady Fluid Forces Acting on a Heaving Foil (히빙운동익에 작용하는 비정상 유체력 특성)

  • Yang Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.150-156
    • /
    • 2006
  • A Flapping foil Produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 Profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also Presented the experimental results on the unsteady fluid forces of a heaving foil at various Parameters.

Study on Unsteady Forces Acting on a Heaving Foil (히빙운동익에 작용하는 비정상 유체력 특성)

  • Yang, Chang-Jo;Kim, Beom-Seok;Choi, Min-Seon;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.222-227
    • /
    • 2005
  • A Flapping foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also presented the experimental results on the unsteady fluid forces of a heaving foil at various parameters.

  • PDF