• Title/Summary/Keyword: Flap angle

Search Result 123, Processing Time 0.024 seconds

SELECTION OF THE OPTIMAL POSITION OF THE FLAP FOR THE IMPROVEMENT OF AERODYNAMIC PERFORMANCE (공기역학적 성능 향상을 위한 플랩의 최적 위치 선정)

  • Kang, H.M.;Park, Y.M.;Kim, C.W.;Lee, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The selection of the optimal position of the flap was performed in order to improve the aerodynamic performance during the take-off and landing processes of aircraft. For this, the existing airfoils of the main wing and flap are selected as the baseline model and the lift coefficients (cl) according to angle of attacks (AOA) were calculated with the change of the position of flap airfoil. The objective function was defined as the consideration of the maximum cl, lift to drag ratio and cl at certain AOA. Then, at 121 experimental points within $20mm{\times}20mm$ domain, two dimensional flow simulations with Spalart-Allmaras turbulence model were performed concerning the AOA from 0 to 15 degree. If the optimal position was located at the domain boundary, the domain moved to the optimal position. These processes were iterated until the position was included in the inside of the domain. From these processes, the flow separation at low AOA was removed and cl increased linearly comparing with that of the baseline model.

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.

Rhombus Subcutaneous Pedicle Skin Flap for Reconstruction of Linear Depressed Postburn Scar Band (능형 피하경 피판을 사용한 사지부 화상후 구축성 함몰 Scar Band 재건)

  • Kim, Dong Chul;Kim, Ji Hoon;Yu, Sung Hoon;Shin, Chi Ho;Lee, Chong Kun
    • Journal of the Korean Burn Society
    • /
    • v.23 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This paper presents our clinical experiences for reconstruction of the linear depressed postburn scar band by rhombus subcutaneous pedicle skin flap (RSPF). We report new RSPF, it's versatility, and effectiveness for correction of the mild to moderate linear depressed postburn scar band. To correct the postburn scar band, we have newly designed the Rhombus Subcutaneous Pedicle Skin Flap (RSPF), which is made as rhombus-shaped skin flap on the inside of scar band. After excision of burn scar band, the each vertex of RSPF flap is advanced into the skin defects at apex of extended skin incision, which is starting from the upper and lower portion of the removed burn scar band at a near right angle. This flap can add more extra skin to adjacent superior and inferior area of excised scar band. We have experienced 2 cases of RSPF for reconstruction of linear depressed postburn scar band deformities in lower extremity. After 3 weeks to 3 months postoperative follow ups, relatively satisfactory results were obtained in all cases. We had successfully reconstructed the linear depressed postburn scar postburn band of lower extremity using the rhombus subcutaneous pedicle skin flap. For the correction of mild to moderate sized linear depressed postburn scar band deformities in extremity, the RSPF is simple, and very effective without donor morbidity.

Experimental Study of the Effect of Side Plate on the Coanda Effect of Sonic Jet (측판이 음속 제트의 코안다 효과에 미치는 영향에 관한 실험적 연구)

  • Park, Sanghoon;Chang, Hongbeen;Lee, Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-30
    • /
    • 2016
  • An experimental study for the characteristics of the thrust-vectoring of a sonic jet utilizing the coanda flap installed at a rectangular nozzle exit is performed. Two side plates are installed at both sides of the flap to decrease the three dimensional effects of the jet on the flap surface. Schlieren flow visualizations and quantitative measurements of the deflection angle of thrusting vector show that the side plates are able to delay the separation of the jet at the downstream of the flap surface. Substantial increase in the deflection angle of the jet as high as $72^{\circ}$ and small thrust loss as low as 7% are obtained by the present thrust-vectoring technique using the side plates.

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap (역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성)

  • Kim, Tag-Gyeom;Kim, Do-Sam;Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.203-216
    • /
    • 2021
  • Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

The facial tissue expansion to achieve the natural cervicomental angle (자연스러운 목턱각 성형을 위한 안면부 조직확장술)

  • Lee, Ki Eung;Koh, Jang Hyu;Seo, Dong Kook;Lee, Jong Wook;Choi, Jae ku;Jang, Young Chul
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.629-636
    • /
    • 2009
  • Purposes: Wide scars occurring on the lower face and neck are a source of both functional and esthetic problems. Consequently, we can use skin grafts, pedicled flaps, free flaps, and tissue expansion for the reconstruction of this area. Compared with other reconstruction techniques, tissue expansion is advantageous in that it enables the maintenance of a color and texture similar to that of the adjacent tissue. However, the conventional method of tissue expansion has been reported to lead to an unnatural cervicomental angle and to the deformity of adjacent structures. We have therefore made efforts to prevent these problems through the use of several operative procedures. Methods: Forty-one patients with lower facial and cervical scars underwent tissue expansion. The tissue expansion was performed using a rectangular-shaped Nagosil$^{(R)}$ tissue expansion device. On insertion of the tissue expander, the intermediate area of superficial fat layer was dissected and then the tissue expander was inserted to make a flap that was as thin as possible. In advancement of the flap, a capsule-formed by the tissue expander-was used for the interrupted fixed suture of the flap to the fascia of the platysma muscle of the neck. This procedure was performed multiple times and also performed between the flap and the periosteum of the mandible, such that the tension was removed during the suture of the flap margin. Finally, the patients were fitted with a Jobst$^{(R)}$ facial garment in order to stabilize the operation site at least twelve months. Results: The most prevalent location of the scar was the cheek (15 cases), followed by the chin in 14 cases and the neck in 12 cases. The mean size of scar was $55.7{\pm}39.4cm^2$. Conclusions: Using our procedures, we have experienced no significant deformities and have also achieved a more natural cervicomental angle in the patients.

A Study on Double Flan of Wells Turbine for Wave Power Conversion (파력발전용 웰즈터빈의 더블플랩에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.W.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.616-621
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 0021 Wells turbine. The five double flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-D numerical grid is based upon that of an experimental test rig. This paper tries to analyze the optimum double flap of Wells turbine with the numerical analysis.

  • PDF

Active load control for wind turbine blades using trailing edge flap

  • Lee, Jong-Won;Kim, Joong-Kwan;Han, Jae-Hung;Shin, Hyung-Kee
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.263-278
    • /
    • 2013
  • The fatigue load of a turbine blade has become more important because the size of commercial wind turbines has increased dramatically in the past 30 years. The reduction of the fatigue load can result in an increase in operational efficiency. This paper numerically investigates the load reduction of large wind turbine blades using active aerodynamic load control devices, namely trailing edge flaps. The PD and LQG controllers are used to determine the trailing edge flap angle; the difference between the root bending moment and its mean value during turbulent wind conditions is used as the error signal of the controllers. By numerically analyzing the effect of the trailing edge flaps on the wind turbines, a reduction of 30-50% in the standard deviation of the root bending moment was achieved. This result implies a reduction in the fatigue damage on the wind turbines, which allows the turbine blade lengths to be increased without exceeding the designed fatigue damage limit.

Total Maxillectomy Defect Reconstruction Using Bipedicled Scapular Osteocutaneous Free Flap: 3 Cases (전 상악골 절제술 후 양경 유리 견갑 골-피부 피판을 이용한 재건 3례)

  • Kim, Jung-Min;Ha, Bom-Jun;Mun, Goo-Hyoun;Hyun, Won-Sok;Bang, Sa-Ik;Oh, Kap-Sung
    • Archives of Reconstructive Microsurgery
    • /
    • v.12 no.1
    • /
    • pp.30-37
    • /
    • 2003
  • We used bipedicled scapular osteocutaneous free flap for total maxillectomy defect reconstruction in 3 cases of malignant maxillary tumor. We elevated two flaps of the skin paddle and the bone flap with one common pedicle - the subscapular artery - which was devided to the angular branch of the thoracodorsal artery and the circumflex scapular artery to reconstruct the nasal cavity, the palate and the zygoma. The angle between the two flaps was free enough so that we could transfer the two flaps through a single microanastomosis. After the operation, patients could swallow and pronounce well, and the wound contracture was minimal so that we could get aesthetically good result.

  • PDF

Morphing Wing Mechanism Using an SMA Wire Actuator

  • Kang, Woo-Ram;Kim, Eun-Ho;Jeong, Min-Soo;Lee, In;Ahn, Seok-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • In general, a conventional flap on an aircraft wing can reduce the aerodynamic efficiency due to geometric discontinuity. On the other hand, the aerodynamic performance can be improved by using a shape-morphing wing instead of a separate flap. In this research, a new flap morphing mechanism that can change the wing shape smoothly was devised to prevent aerodynamic losses. Moreover, a prototype wing was fabricated to demonstrate the morphing mechanism. A shape memory alloy (SMA) wire actuator was used for the morphing wing. The specific current range was measured to control the SMA actuator. The deflection angles at the trailing edge were also measured while various currents were applied to the SMA actuator. The trailing edge of the wing changed smoothly when the current was applied. Moreover, the deflection angle also increased as the current increased. The maximum frequency level was around 0.1 Hz. The aerodynamic performance of the deformed airfoil by the SMA wire was analyzed by using the commercial program GAMBIT and FLUENT. The results were compared with the results of an undeformed wing. It was demonstrated that the morphing mechanism changes the wing shape smoothly without the extension of the wing skin.