• Title/Summary/Keyword: Flap Airfoil

Search Result 64, Processing Time 0.024 seconds

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi Seong-Wook;Kim Jai-Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.165-171
    • /
    • 2004
  • Smart UAV, which adopting tiltrotor aircraft concept, requires long endurance and high speed capability simultaneously These two contradictable flight performances are hard to meet with single wing concept and inevitably require the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the performance requirement, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flaps. Considering aerodynamic performance and manufacturing simplicity, a final flap configuration is selected.

  • PDF

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

Incompressible/Compressible Flow Analysis over High-Lift Airfoils Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim C. S.;Kim C. A.;Rho O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 1999
  • Two-dimensional, unsteady, incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. The compressible code involves a conventional upwind-differenced scheme for the convective terms and LU-SGS scheme for temporal integration. The incompressible code with pseudo-compressibility method also adopts the same schemes as the compressible code. Three two-equation turbulence models are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by predicting the flow around the RAE 2822 transonic airfoil and the NACA 4412 airfoil, respectively. In addition, both the incompressible and compressible code are used to compute the flow over the NLR 7301 airfoil with flap to study the compressible effect near the high-loaded leading edge. The grid systems are efficiently generated using Chimera overlapping grid scheme. Overall, the κ-ω SST model shows closer agreement with experiment results, especially in the prediction of adverse pressure gradient region on the suction surfaces of high-lift airfoils.

  • PDF

Design of Morphing Airfoil Using Shape Memory Alloy Actuator (형상기억합금 작동기를 이용한 모핑 에어포일 설계)

  • Noh, Mi-Rae;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.562-567
    • /
    • 2016
  • Morphing wing which has a configuration optimized to flight speed and condition is faced to a lot of barriers to be overcome such as actuator technique, structural mechanization technique, flexible skin material, control law, and so on. As the first step for developing a morphing wing with rapid response, we designed and fabricated the morphing airfoil using a SMA(shape memory alloy) wire actuator and torsional bias springs. The design concept of the morphing airfoil was verified through operation test. The measured results show that the flap deflects smoothly and fast.

A Preliminary Study on Piezo-aeroelastic Energy Harvesting Using a Nonlinear Trailing-Edge Flap

  • Bae, Jae-Sung;Inman, Daniel J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.407-417
    • /
    • 2015
  • Recently, piezo-aeroelastic energy harvesting has received greater attention. In the present study, a piezo-aeroelastic energy harvester using a nonlinear trailing-edge flap is proposed, and its nonlinear aeroelastic behaviors are investigated. The energy harvester is modeled using a piezo-aeroelastic model of a two-dimensional typical section airfoil with a trailing-edge flap (TEF). A piezo-aeroelastic analysis is carried out using RL and time-integration methods, and the results are verified with the experimental data. The linearizing method using a describing function is used for the frequency domain analysis of the nonlinear piezo-aeroelastic system. From the linear and nonlinear piezo-aeroelastic analysis, the limit cycle oscillation (LCO) characteristics of the proposed energy harvester with the nonlinear TEF are investigated in both the frequency and time domains. Finally, the authors discuss the air speed range for effective piezo-aeroelastic energy harvesting.

SELECTION OF THE OPTIMAL POSITION OF THE FLAP FOR THE IMPROVEMENT OF AERODYNAMIC PERFORMANCE (공기역학적 성능 향상을 위한 플랩의 최적 위치 선정)

  • Kang, H.M.;Park, Y.M.;Kim, C.W.;Lee, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The selection of the optimal position of the flap was performed in order to improve the aerodynamic performance during the take-off and landing processes of aircraft. For this, the existing airfoils of the main wing and flap are selected as the baseline model and the lift coefficients (cl) according to angle of attacks (AOA) were calculated with the change of the position of flap airfoil. The objective function was defined as the consideration of the maximum cl, lift to drag ratio and cl at certain AOA. Then, at 121 experimental points within $20mm{\times}20mm$ domain, two dimensional flow simulations with Spalart-Allmaras turbulence model were performed concerning the AOA from 0 to 15 degree. If the optimal position was located at the domain boundary, the domain moved to the optimal position. These processes were iterated until the position was included in the inside of the domain. From these processes, the flow separation at low AOA was removed and cl increased linearly comparing with that of the baseline model.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

Morphing Wing Mechanism Using an SMA Wire Actuator

  • Kang, Woo-Ram;Kim, Eun-Ho;Jeong, Min-Soo;Lee, In;Ahn, Seok-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • In general, a conventional flap on an aircraft wing can reduce the aerodynamic efficiency due to geometric discontinuity. On the other hand, the aerodynamic performance can be improved by using a shape-morphing wing instead of a separate flap. In this research, a new flap morphing mechanism that can change the wing shape smoothly was devised to prevent aerodynamic losses. Moreover, a prototype wing was fabricated to demonstrate the morphing mechanism. A shape memory alloy (SMA) wire actuator was used for the morphing wing. The specific current range was measured to control the SMA actuator. The deflection angles at the trailing edge were also measured while various currents were applied to the SMA actuator. The trailing edge of the wing changed smoothly when the current was applied. Moreover, the deflection angle also increased as the current increased. The maximum frequency level was around 0.1 Hz. The aerodynamic performance of the deformed airfoil by the SMA wire was analyzed by using the commercial program GAMBIT and FLUENT. The results were compared with the results of an undeformed wing. It was demonstrated that the morphing mechanism changes the wing shape smoothly without the extension of the wing skin.

Design Exploration of High-Lift Airfoil Using Kriging Model and Data Mining Technique

  • Kanazaki, Masahiro;Yamamoto, Kazuomi;Tanaka, Kentaro;Jeong, Shin-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.28-36
    • /
    • 2007
  • A multi-objective design exploration for a three-element airfoil consisted of a slat, a main wing, and a flap was carried out. The lift curve improvement is important to design high-lift system, thus design has to be performed with considered multi-angle. The objective functions considered here are to maximize the lift coefficient at landing and near stall conditions simultaneously. Kriging surrogate model which was constructed based on several sample designs is introduced. The solution space was explored based on the maximization of Expected Improvement (EI) value corresponding to objective functions on the Krigingmodels. The improvement of the model and the exploration of the optimum can be advanced at the same time by maximizing EI value. In this study, a total of 90 sample points are evaluated using the Reynolds averaged Navier-Stokes simulation(RANS) for the construction of the Kriging model. In order to obtain the information of the design space, two data mining techniques are applied to design result. One is functional Analysis of Variance(ANOVA) which can show quantitative information and the other is Self-Organizing Map(SOM) which can show qualitative information.

Dynamic Characteristic Analysis of Active Gurney Flap Considering Rotational Effect (회전 효과를 고려한 Active Gurney Flap 의 동특성 해석)

  • Kee, YoungJung;Kim, TaeJoo;Kim, DeogKwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • In this study, the finite element analysis was carried out to investigate dynamic characteristics of the AGF(Active Gurney Flap) which is under development for reducing vibration and noise of the helicopter rotor system. The Gurney flap is a kind of small flat plate, mounted normal to the lower surface of the airfoil near to the trailing edge. An electric motor, L-shaped linkages and flap parts were integrated into a rotor bade, and 3~5/rev control was given to the AGF to reduce the vibration in the fixed frame. Thus, an explicit time integration method was adopted to investigate the dynamic response of the AGF with considering both centrifugal force due to the rotor rotation and active control input, and it can be seen that the vertical displacement of the AGF was satisfied to meet the design requirement.