DOI QR코드

DOI QR Code

Dynamic Characteristic Analysis of Active Gurney Flap Considering Rotational Effect

회전 효과를 고려한 Active Gurney Flap 의 동특성 해석

  • Kee, YoungJung (Korea Aerospace Research Institute, Rotorcraft Research Team) ;
  • Kim, TaeJoo (Korea Aerospace Research Institute, Rotorcraft Research Team) ;
  • Kim, DeogKwan (Korea Aerospace Research Institute, Rotorcraft Research Team)
  • 기영중 (한국항공우주연구원 회전익기 연구팀) ;
  • 김태주 (한국항공우주연구원 회전익기 연구팀) ;
  • 김덕관 (한국항공우주연구원 회전익기 연구팀)
  • Received : 2015.01.07
  • Accepted : 2015.08.04
  • Published : 2015.09.01

Abstract

In this study, the finite element analysis was carried out to investigate dynamic characteristics of the AGF(Active Gurney Flap) which is under development for reducing vibration and noise of the helicopter rotor system. The Gurney flap is a kind of small flat plate, mounted normal to the lower surface of the airfoil near to the trailing edge. An electric motor, L-shaped linkages and flap parts were integrated into a rotor bade, and 3~5/rev control was given to the AGF to reduce the vibration in the fixed frame. Thus, an explicit time integration method was adopted to investigate the dynamic response of the AGF with considering both centrifugal force due to the rotor rotation and active control input, and it can be seen that the vertical displacement of the AGF was satisfied to meet the design requirement.

본 논문에서는 헬리콥터 로터 시스템의 진동과 소음을 저감시키기 위해 개발이 진행 중인 능동거니플랩(AGF, Active Gurney Flap)에 대해 유한요소법을 이용하여 수행된 동특성 해석결과를 소개하였다. 거니플랩은 평판의 형태로 블레이드 하부 표면에 수직인 방향으로 전개되며, 블레이드 뒷전(T/E, Trailing Edge) 부위에 장착된다. 거니플랩 조립체는 전기모터와 L-형 링키지 및 플랩 등의 부품들로 구성되어 블레이드 내부에 장착되며, 고정프레임에서의 진동 성분들을 감소시키기 위해 3~5/rev 범위로 능동적인 제어가 필요하다. 따라서 외연적 시간적분법을 통해 로터 회전에 의한 원심력과 제어입력이 적용되고 있는 상황에서 거니플랩의 동적 응답특성을 분석하였으며, 해석 결과를 통해 거니플랩의 하향변위 요구도를 만족시킬 수 있음을 확인하였다.

Keywords

References

  1. www.cleansky.eu/content/page/green-rotorcraft
  2. Lau, B. H., Obriecht, N., Gasow, T., Hagerty, B. and Cheng, K. C., Boeing-SMART Rotor Wind Tunnel Test Data Report for DARPA Helicopter Quieting Program, NASA TM 2010-216404.
  3. Leishman, J. G., 2006, Principles of Helicopter Aerodynamics, Cambridge University Press.
  4. Ashwani , K., Padthe, L. L. and Friedmann, P., 2010, "A Comprehensive Study of Active Microflaps for Vibration Reduction in Rotorcraft," 66th AHS Forum.
  5. Dam, C. P., Ten, D. T., 1999, "Gurney Flap Experiments on Airfoils and Wings," Journal of Aircraft, Vol.36, No.2, pp.484-486. https://doi.org/10.2514/2.2461
  6. Kim, S. H., 2014, International Cooperative Research on the Active Controlled Rotor Technology for Noise Reduction, Korea Aerospace Research Institute, Research Report.
  7. Kang, H. J., Kim, D H. and Kim, S. H., 2013, "Aerodynamic Effects of the Tab on a Hovering Rotor Blade," Journal of Computational Fluids Engineering, Vol.18, No.3, pp.60-66. https://doi.org/10.6112/kscfe.2013.18.3.060
  8. Taylor, John W. R., Jane's All the World's Aircraft, Coulsdon, Surrey, UK, Jane's Information Group.
  9. www.NFX.co.kr, Midas-NFX User's manual.