• Title/Summary/Keyword: Flange type connection system

Search Result 10, Processing Time 0.247 seconds

Study on Behavior Characteristics of L-Type Flange Bolt Connection for Supporting Structures of Wind Turbines (풍력터빈 지지구조물 L형 플랜지 볼트 접합부의 거동 특성에 관한 연구)

  • Jung, Dae-Jin;Hong, Kwan-Young;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.279-286
    • /
    • 2021
  • In this study, we investigated the behavior characteristics of the L-type flange bolt connection, which is used to connect upper and lower flanges having L-type ring sections, by bolts. This connection is mainly used in domestic wind turbine structures, wherein it is a vital component as any imperfection could cause the collapse of the entire structural system. Therefore, understanding the behavior characteristics of the L-type flange bolt connection is imperative. In this study, the connection's response to external force was simulated using finite element (FE) analysis and the FE model was idealized to behave as a single L-type bolt flange. The variation in the bolt tension and the L-type flange stress were analyzed to understand the behavior characteristics of the connection. Moreover, the bolt-load function models proposed by Petersen, Schmidt/Neuper and VDI 2230, theoretically expressing a relation between bolt tension and external force, were compared to evaluate the suitability of the FE analysis and analyze the significant behavior characteristics of the connection. Furthermore, the changes in the bolt-load curve due to the variations in the partial dimensions of the L-type flange bolt connection were analyzed.

Seismic and progressive collapse assessment of SidePlate moment connection system

  • Faridmehr, Iman;Osman, Mohd Hanim;Tahir, Mahmood Bin Md.;Nejad, Ali Farokhi;Hodjati, Reza
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.35-54
    • /
    • 2015
  • The performance of a newly generated steel connection known as SidePlateTM moment connection for seismic loading and progressive collapse phenomenon has been investigated in this paper. The seismic evaluation portion of the study included a thorough study on of interstory drift angles and flexural strengths based on 2010 AISC Seismic Provisions while the acceptance criteria provided in UFC 4-023-03 guideline to resist progressive collapse must be satisfied by the rotational capacity of the connections. The results showed that the SidePlate moment connection was capable of attaining adequate rotational capacity and developing full inelastic capacity of the connecting beam. Moreover, the proposed connection demonstrated an exceptional performance for keeping away the plastic hinges from the connection and exceeding interstory drift angle of 0.06 rad with no fracture developments in beam flange groove-welded joints. The test results indicated that this type of connection had strength, stiffness and ductility to be categorized as a rigid, full-strength and ductile connection.

Improvement in Productivity of Engine Clutch Female Flanges for Tank (전차용 엔진클러치 암플랜지 생산성 향상을 위한 연구)

  • Kim, Joong-Seon;Kwon, Dae-Kyu;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.56-62
    • /
    • 2022
  • The tank engine clutch flange constitutes a tank on which the engine and transmission of the tank are mounted. The engine clutch flange is fabricated using a difficult-to-cut material that exhibits high strength and hardness. It is difficult to process and requires considerable processing expertise. In addition, the engine clutch flange for the tank requires high machining precision because it is a system in which the connection is detachable. Because it requires high processing precision, the measurement of products equally important as processing. However, productivity is low owing to the significant amount of time required to measure each product using a three-dimensional coordinate measuring machine. Hence, this study is conducted to improve the productivity of the female tank engine clutch flange. Dedicated hobs and jigs are designed and manufactured to convert the existing end-mill cutting processing into hobbing cutting processing. An engine clutch for the tanks is manufactured using the manufactured dedicated hob and jig, and the shortening time is verified by measuring the processing time. In addition, a jig for inspection is designed and manufactured to measure the precision of the product. To verify the inspected product, the product precision is measured using a contact-type three-dimensional coordinate measuring machine and a surface roughness measuring instrument. The study confirmed that the productivity of the engine clutch flange product for tanks can be improved by simplifying the process, reducing the processing time, and simplifying product inspection.

Estimation of Bearing Capacity according to Improvement of Helical Pile Connection System (헬리컬파일 연결부 개선에 따른 지지력 평가)

  • Lee, Jong-Beom;Jung, Dae-Seok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.347-348
    • /
    • 2017
  • 헬리컬파일은 한 개 이상의 나선형 원판이 고강도 강관 파이프에 부착된 말뚝이다. 기존의 헬리컬파일은 커플러 형태의 연결방식을 사용하였으나, 볼트 구멍과 볼트사이의 유격 및 연결소켓과 강관 사이의 유격등으로 인한 높은 지지력 기대가 힘들었다. 본 연구는 헬리컬파일 연결방식 개선을 위해 기존 커플러형식에서 플랜지 형식을 적용하였고, 정재하시험을 통해 지지력을 비교 분석 하였다. 정재하시험결과 플랜지 형태의 연결방식이 커플러 형태의 연결방식보다 높은 지지력이 발휘되었고 플랜지형태 적용시 상향식그라우팅이 가능하여 품질이 향상되었다. 또한 연결부 유격을 방지 할 수 있었다.

  • PDF

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Performance Evaluation of Full-scale H-shape Beam-to-Column New-Shape Weak Axis Connection (실물크기의 H형강 기둥-보 신형상 약축접합부에 대한 구조성능평가)

  • Shim, Hyun Ju;Cho, Han Sol;Kim, Dae Hoi;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.233-242
    • /
    • 2013
  • This paper reports a new beam-to-column connection that is suitable for use in the weak axis of a column. The proposed system mainly uses bolts, and it minimizes the use of welding, which is generally difficult to perform onsite. In this system, a H-shape steel beam is joined to a H-shape steel column by bolted splices at the top flange and without a scallop at the web. The structural performance of the proposed connection was verified through full-scale tests of nine specimens, taking into account the effects of the geometry and arrangement of the plate.

Structural Design Equation for a Box-shape Pressure Compensated Chamber of Pilot Mining Robot (파일럿 집광로봇 박스형 압력보상용기 구조설계식)

  • Lee, Minuk;Hong, Sup;Lim, Woochul;Lee, Tae Hee;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.66-73
    • /
    • 2012
  • A pressure compensated chamber of a pilot mining robot isolates and protects an electrical-electronic system from the ambient highly pressured water. Since the inner pressure of the chamber is compensated with outer water pressure using hydraulic oil and pressure compensator, there exists a pressure difference, less than 1 bar, between outer and inner surface. The structural safety of the chamber is obtained relatively easier than the canister type which inner pressure is kept as the atmospheric pressure. However, due to the adoption of box shape for space efficiency and usage of the transparent engineering plastic viewport for checking inner circumstance, the viewport can be largely deformed. This large deformation can cause an additional tensile force, called the prying force, to the bolt-flange connection parts of the viewport. In this paper, we suggest the structural design equation considering the prying action for designing the structure of a box-shape pressure compensated chamber.

Seismic Evaluation for Strainer in the Primary Cooling System (일차 냉각계통 스트레이너에 대한 내진 건전성 평가)

  • 정철섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.295-304
    • /
    • 2000
  • To evaluate the structural integrity for the strainer under seismic loading the seismic analysis and design were performed for T-type strainer in accordance with ASME, Section Ⅲ, Class 3(ND). Since there are no specified design requirements for the strainer in ASME Code, the strainer body was analysed according to ND-3500, valve design. Flanged joints connected with PCS piping were designed according to ND-3658.3. And the criteria for the cover flange was governed by the Appendix XI. Both a frequency analysis and an equivalent static seismic analysis of the strainer were carried out using the finite element computer program, ANSYS. The frequency analysis results show the fundamental natural frequency is greater than 33Hz, thus justifying the use of the equivalent static analysis through which membrane and bending stresses are obtained in the critical points near the branch connection area. The results of the seismic evaluation fully satisfied with the structural acceptance criteria of the ASME Code. Accordingly the structural integrity on the strainer body and flanges were proved.

  • PDF

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.