• Title/Summary/Keyword: Flammable liquid

Search Result 102, Processing Time 0.022 seconds

The Measurement of Flash Point for Unflammable-Flammable Binary Mixtures(CCl4+o-Xylene and CCl4+p-Xylene) Using Open Cup Tester (개방식 장치를 이용한 난연성-가연성 이성분계 혼합물(CCl4+o-Xylene and CCl4+p-Xylene)의 인화점 측정)

  • Kim, Chang-Seob;Lee, Sungjin;Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. The flash point is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures($CCl_4+o-xylene$ and $CCl_4+p-xylene$) has been measured for the entire concentration range using Tag open cup tester. The flash point temperature was estimated using Raoult's law, UNIQUAC model and empirical equation. The experimentally derived flash point was also compared with the predicted flash point. The empirical equation is able to estimate the flash point fairly well for $CCl_4+o-xylene$ and $CCl_4+p-xylene$ mixture.

Analysis of Characteristics on the Static Electricity by Streaming Electrification (유동대전에 의한 정전기 특성 분석)

  • Kim, Gil-Tae;Lee, Jae-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.42-46
    • /
    • 2005
  • The static electricity by thinner flow and discharge energy is investigated experimentally for the purpose of preventing the electrostatic discharge and damage. Test system for evaluating streaming electrification consists of a teflon pipe, a reservoir tank a pump, flowmeters and an electrometer. When dielectric liquid flows through a pipe from one vessel to another, the potential difference generated in the collecting vessel is due to the accumulation of charges. These charges result from the convection of a part of the electrical double layer existing in the tube at the contact between the liquid and the inner wall. When the fluid velocity increases, the electric current increases proportionally. The charging current and accumulated charges by streaming electrification at the thinner velocity of 40cm/s are measured a range of 5 nA and $0.27{\mu}C$ respectively. This amount of static discharge energy generated by streaming electrification is enough to ignite flammable solvent. Therefore surface electric potential should decrease by using electrostatic shielding and ground.

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD (CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안)

  • Eun-Hee Kim;Seung-Hyo An;Jun-Seo Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.

Spectral Analysis Method for Classification of Liquid Characteristics (액체의 특성 분류를 위한 스펙트럼 분석 방법)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2206-2212
    • /
    • 2016
  • It is necessary to find characteristic phenomena related with permittivity differences for classification of liquid characteristics. If these phenomena can be remotely detected and characteristics can be extracted, it will be very useful in finding flammable liquid materials and classifying substances of these liquids. Therefore, in this paper, reflection and transmitted signals were analyzed from three receiving antennas with one transmitting antenna using wideband electromagnetic wave signals. Frequency response characteristics of reflected or transmitted signals are different according to characteristics of liquid materials. However, conventional FFT methods cannot be applied due to problems of low resolution caused by data windowing distortion. To minimize these problems, eigenvector analysis method was applied for high resolution spectrum estimation of received signals. From these results, it can be shown that classification of many kinds of liquids are possible using peak frequencies and corresponding peak power values of spectrum estimates obtained from various liquid materials.

Experimental Study on Ignition and Explosion Hazard by Measuring the Amount of Non-volatile (NVR) and Explosion Limit of Biodiesel Mixture (바이오디젤 혼합물의 가열잔분측정과 폭발한계 측정을 통한 발화 및 폭발위험성에 대한 실험적인 연구)

  • Kim, Ju Suk;Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.182-193
    • /
    • 2022
  • Purpose: By measuring and evaluating the risk of biodiesel through non-volatile residue (NVR) and flash point and explosion limit measurement at a specific temperature according to ASTM test standards, the risk of chemical fire causative substances is identified and a universal evaluation method By derivation and securing the risk-related data of the material, it can be used for the identification and analysis of the cause of the fire, and it can be applied to the risk assessment of other chemical substances Method: In order to measure the risk of biodiesel, it was measured using the non-volatile residue(NVR) measurement method, which measures how much flammable liquid is generated at a specific temperature. Heating was tested by applying KS M 5000: 2009 Test Method 4111. In addition, the flash point was measured using the method specified in ASTM E659-782005, and the energy supply method was measured using the constant temperature method. In addition, the explosion limit measurement was conducted in accordance with ASTM E 681-04 「Standard test method for concentration limits of flammability of chemicals(Vapors and gases)」 test standard. Result: As a result of checking the amount of combustible liquid by the non-volatile residue (NVR)measurement method, the non-volatile residue(NVR) of general diesel when left at 105±2℃ for 3 hours was about 30% (70% of volatile matter) and about 4% of biodiesel. In addition, similar results were obtained for the non-volatile residue(NVR)heating temperature of 150±2℃, 3 hours and 200±2℃ for 1 hour, and white smoke was generated at 200℃ or higher. In addition, similar values were obtained as a result of experimentally checking the explosion (combustion) limits of general diesel, general diesel containing 20% biodiesel, and 100% biodiesel. Therefore, it was confirmed that the flammability risk did not significantly affect the explosion risk. Conclusion: The results of this study suggested the risk judgment criteria for mixtures through experimental research on flammable mixtures for the purpose of securing the effectiveness, reliability, and reproducibility of the details of the criteria for determining dangerous substances in the existing Dangerous Materials Safety Management Act. It will be possible to provide reference data for the judgment criteria for flammable liquids that are regulated in the field. In addition, if the know-how for each test method is accumulated through this study, it is expected that it will be used as basic data in the research on risk assessment of dangerous substances and as a basis for research on the determination of dangerous substances.

The Measurement of Flash Point of Water-Methanol and Water-Ethanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 Water-Methanol과 Water-Ethanol계의 인화점 측정)

  • Ha, Dong-Myeong;Park, Sang Hun;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.39-43
    • /
    • 2015
  • The flash point is the major property to characterize fire and explosion hazard of liquid mixtures. The flash point is the lowest temperature at which a liquid gives off enough vapor to form a flammable air-vapor mixture. The flash points of two aqueous mixtures, water-methanol and water-ethanol, were measured using Seta flash closed cup tester. A prediction method based on activity coefficient models, Wilson and UNIQUAC equations, was used to calculate the flash point. The calculated flash points were compared to the results by the calculating method using Raoult's law. The calculated values based on activity coefficients models were found to be better than those based on the Raoult's law.

Measurement of Lower Flash Point for Ternary Mixture, n-Nonane+n-Decane+n-Dodecane System (삼성분계 혼합물인 n-Nonane+n-Decane+n-Dodecane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important indicators of the flammability of liquid solutions. The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. In this study the flash points of ternary liquid solutions, n-nonane+n-decane+n-dodecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and empirical equation. The calculated data by empirical equation described the measured values more effectively than those calculated by Raoult's law.

Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics (용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Low explosion limits of flammable liquid mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult's law, van Laar equation and Wilson equation are shown to be applicable for the prediction of the lower explosion limits for ethylacetate+ethanol and ethanol+toluene systems. The calculated values based on Raoult's law were found to be better than those based on van Laar and Wilson equations.

  • PDF

Study on the Improvement of Flame Retardancy of Bamboo Fiber Using Eco-Friendly Liquid Flame Retardant (친환경 액상 난연제를 이용한 대나무섬유의 난연화 연구)

  • Dong-Woo, Lee;Maksym, Li;Jung-il, Song
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.456-462
    • /
    • 2022
  • Since natural fibers are highly flammable, it is not easy to make them flame retardant. In this study, a liquid flame retardant based on phytic acid, APTES, and Thiourea, which are flame retardant candidates derived from nature, was prepared and its performance was verified through flame retardant treatment and flame retardancy evaluation of bamboo fibers. When a liquid flame retardant is used, it is possible to treat a large amount of natural fibers with flame retardant treatment. Nine types of flame-retardant treated bamboo fibers were prepared according to the Taguchi design of experiment method. Thereafter, vertical burning test and microcalorimeter test were performed for flame retardancy evaluation, and the surface of natural fibers before and after flame-retardant treatment was compared using scanning electron microscope. The results show that phytic acid has a significant effect on improving the flame retardancy of natural fibers. Through microstructure analysis, it was assumed that the phytic acid helps flame retardant to uniformly adhere to the surface of natural fibers. If such research results are utilized, it is possible to make a large amount of natural fibers high flammability in an eco-friendly way, which is expected to be advantageous for the application of prototypes.