• Title/Summary/Keyword: Flammable liquid

Search Result 102, Processing Time 0.02 seconds

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

A Study on the Application of Criteria for the Classification of Explosive Hazardous Areas in Flammable Liquid Handling Laboratories (인화성액체 취급 연구실의 폭발위험장소 구분에 관한 기준 적용 연구)

  • Min-Ho, Kim;Jun-Seo, Lee;Eun-Hee, Kim;Byung-Chol, Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.1-8
    • /
    • 2022
  • With the development of the chemical industry, related accidents frequently occur, and fire and explosion accidents account for a large proportion. In order to prevent fire and explosion accidents, places that handle flammable liquids are classified according to the Korean Industrial Standards (KSC IEC60079-10-1) in accordance with the relevant laws. The same applies to laboratories dealing with flammable liquids. This paper verified the applicability of the procedure for classifying explosion hazard areas according to the Korean Industrial Standards when flammable liquid release from the laboratory to form an evaporative pool, and also verified the effect of a change in ventilation speed on the release characteristics. Through this, it was found that it was difficult to apply the criteria for the classification of places at risk of explosion according to the Korean Industrial Standards, and special safety measures should be prepared.

Analysis of Risk Assessment Factors for Gas leakage and Dispersion in Underground Power Plant (지하복합발전플랜트 내의 가스 누출 및 확산에 의한 위험성 평가 인자 분석)

  • Choi, Jinwook;Li, Longnan;Park, Jaeyong;Sung, Kunhyuk;Lee, Seonghyuk;Kim, Daejoong
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Gas leakage and dispersion in the underground LNG power plant can lead to serious fire and explosion accident. In this study, computational fluid dynamics simulation was applied to model the dynamic process of gas leakage and dispersion phenomena in a closed space. To analyze the risk assessment factor, such as the flammable volume ratio, transient simulations were carried out for different scenarios. The simulation results visualized the gas distribution with time in the closed space. The flammable volume ratio was introduced for quantitative analysis the fire/explosion probability.

Study on the Risk of Flammability & Combustion of Liquid Mixtures such as Alcohols (알코올류 등의 액체 혼합물에 대한 인화 및 연소 위험성에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.634-647
    • /
    • 2019
  • Purpose: Currently, many chemicals are used in industrial and real life, and many substances are used in the form of a single substance, but most of them are used in the form of a mixture, and there is a need for a criterion for judging the danger of these substances. Method: Therefore, this study aims to confirm the risk criteria of the mixture through experimental studies on flammable mixtures in order to secure the effectiveness of the details of the existing Dangerous Goods Safety Management Act angerous Goods Judgment Criteria and to ensure the reliability and reproducibility of the dangerous goods judgment. Result: Experimental results show that alcohol flash point is mixed with water, which is a non-flammable liquid. Similar flash point trends occurred around 60% on an alcohol basis. In addition, in the case of flammable-combustible mixtures, there was little change in flash point if the flash point difference of the two materials was not large, and if the flash point difference of the two materials was low, the flash point tended to increase with the increase of the high flash point material. Conclusion: In the future, the test results may provide reference data on the experimental criteria for the flammable liquids that are cracked at the fire site.

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

A Study on Flash Points of Flammable Substances- 1. Pure Substances and A Mixture of Binary System - (가연성물질의 인화점에 관한 연구- 1. 순수성분 및 2성분계 혼합물-)

  • 하동명;목연수;최재욱
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • The flash point is generally used as a hazardous index of fire and explosion of a flammable liquid. A classification of the flash points is important for the safe handling of flammable liquids such as solvent mixtures. The flash points of pure substances and solvent mixtures can be c calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and a activity coefficient models. In this study, experimentally determined lower and upper flash points w were compared with the calculated values by using Raoult's law and van Laar equation. The flash points of pure substances were in agreement with the calculated values by vapor pressure and e explosive limits. Also, the lower flash points of M.E.K(methylethylketone)-toluene system were i in agreement with the predicted values by Raoult’s law, and the upper flash points were in a agreement with the predicted values by van Laar equation. By means of this methodology, it is possible to evaluate reliability of expermental data of the flash points of the flammable mixtures.

  • PDF

EXPLOSION HAZARDS IN TANKS OF HIGH FLASH POINT LIQUIDS

  • Zalosh, Robert
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.203-210
    • /
    • 1997
  • Reports of explosions in cargo and storage tanks of high flash point liquids such as residual fuel oil, asphalt, and oily waste water have shown that these explosions have occurred even when the liquid temperatures are well below the liquid nominal flash point. The reasons for these seemingly paradoxical explosions are reviewed and results of recent laboratory tests are presented to better define the conditions leading to flammable vapor atmospheres in these tanks. The potential effectiveness of various prevention measures are discussed including inerting, monitoring tank vapor concentrations, and periodic cleaning of condensation and deposits on the tank walls and roof.

  • PDF