• Title/Summary/Keyword: Flammable

Search Result 513, Processing Time 0.026 seconds

Analysis of Parameters Affecting the Consequence of the Flash Fire Accident by the Release of Heavy Gas (무거운 가스의 누출에 의한 플래쉬화재사고에서 사고결과에 미치는 매개변수의 영향 분석)

  • Kim, Tae-Ok;Lee, Hern-Chang;Ham, Byeong-Ho;Cho, Ji-Hoon;Shin, Dong-Il;Jang, Seo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.29-39
    • /
    • 2006
  • The effect of parameters on the consequence of the flash fire accident by the release of heavy gas(in this study, xylene vapor) was analyzed. Simulation results showed that the distance with the lower flammable limit($X_{LFL}$) was increased with the increase of the release hole diameter. For the case of the elevated release, $X_{LFL}$ was increased with the increase of the wind speed and the release height, but $X_{LFL}$ was not affected by the wind speed for the release on the ground level. Therefore, the accident in the elevated release was more dangerous than the release on the ground level. In this condition, the release height had more effect on $X_{LFL}$ at the night time than the daytime and in the urban area than the rural area.

Parameter Analysis of the Damage Area and the Financial Loss by the Gas Release Accident at Pressure Vessels (압력용기에서 가스 누출사고에 의한 피해지역 및재정적 손실의 매개변수 분석)

  • Kim, Bong-Hoon;Lee, Hern-Chang;Choi, Jae-Uk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.42-49
    • /
    • 2011
  • To achieve the safety management of an industry by using practical consequence analysis, parameters affecting damage area and financial loss by gas release accident were analyzed at pressure vessels containing flammable gas. As a result, the total financial loss cost was largely effected by the business interruption cost, and it was considered for equipment type and materials, process properties, and circumstances. Also, the consequences of the financial loss must be practically used more than the consequences of the damage area in industry.

Estimation of the Lower Explosion Limits Using the Normal Boiling Points and the Flash Points for the Ester Compounds (에스테르화합물에 대한 표준끓는점과 인화점을 이용한 폭발하한계 추산)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.84-89
    • /
    • 2007
  • The lower explosion limit(LEL) is one of the major combustion properties used to determine the fire and explosion hazards of the combustible substances. In this study, the lower explosion limits of the ester compounds were predicted by using the normal boiling points and the flash points based on the liquid thermodynamic theory. As a results, the A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated the LEL for the ester are 8.80 vol% and 0.18 vol%, respectively and the coefficient of correlation was 0.965. From a given results, by the use of the proposed methodology, it is possible to predict the lower explosion limits of the other flammable materials.

A Study on the safety measures for hydrogen cooling system of 500MW class thermal power plant (500MW급 화력발전소 수소냉각시스템의 안전대책)

  • Kim, Soon-Gi;Yuk, Hyun-Dai;Ka, Chool-Hyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.385-390
    • /
    • 2005
  • This paper provided a counter measures against the troubles and accidents that are likely to take place in the power plant using hydrogen gas as a coolant for the cooling system of the generator. Because of the extremely wide flammability limits of hydrogen in comparison to the other flammable gases, the safety measures against the hydrogen accidents is very important to ensure the normal operation of electric-power facility. This study's purpose was a presentation of standard model of safety management of hydrogen equipments in the coal firing power plant such as following items: 1) providing the technical prevention manual of the hydrogen explosions and hydrogen fires occurring in the cooling system of power generator; 2) the selection of explosion-proof equipments in terms of the risk level of operating environment; 3) the establishment of regulations and counter measures, such as the incorporation of gas leakage alarm device, for preventing the accidents from arising; 4) the establishment of safety management system to ensure the normal operation of the power plant.

  • PDF

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

A Study on the Minimum Safe Separation Distance from LPG Filling Station (액화석유가스 충전소의 안전거리에 관한 연구)

  • Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-33
    • /
    • 1999
  • The minimum safe separation distances from LPG filling station was discussed in this work based on the accident data from 1987 to 1998 in south korea, the initial damage of accident, and standards of countries. The safety distances are adequate to reduce ignition probability by released gas and provide space for implementation of emergency response after ignition. Therefore, the distances are related to the distance to LFL(Lower Flammable Limit) and the length of jet fire to prevent accident escalation. The range of the distance was suggested in this work to make standard with considering economic, culture, and safe guards.

  • PDF

Evaluation of the Fatigue Strength and the Mechanical Properties for Cargo Containment System in LNG Ship (LNG선박용 내조시스템 소재의 기계적 특성 및 피로강도 평가)

  • Shim, Hee-Jin;Kim, Min-Tea;Yoon, In-Su;Kim, Yung-Kyun;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1-6
    • /
    • 2007
  • The membrane type LNG(Liquefied Natural Gas) cargo containment system is a special design structure for the large deformation behavior at LNG temperature$(-162^{\circ}C)$. The design of membrane is required great confidence so that membrane can plat role in the tightness of flammable fluid storing. LNG cargo containment is loaded and unloaded LNG between twice and five times in a week. During this process, the membrane has large deformation behavior due to the variation of temperature and pressure to the self weight. In this study, the evaluation of the fatigue strength of membrane is very important to determine the design life of LNG storage tank and to evaluate the mechanical properties at the LNG temperature. Also, in the view point of large deformation, the evaluation method is applied conservatively $\epsilon-N_f$ curve of SUS 304L.

  • PDF

A Study on the Harmonization of Poisonous Substance Used in Paint Manufacture (도료제조업종에서 취급하는 유독물의 GHS 분류 통일화 방안 연구)

  • Lee, Jong Han;Hong, Mun Ki;Kim, Hyun Ji;Park, Sang Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.156-163
    • /
    • 2013
  • Objectives: Numerous poisonous substances are used in paint manufacture, but there are differences in the results of GHS classification between the Ministry of Labor(MOL) and the Ministry of Environment(MOE). Therefore, paint manufacturers suffer confusion as to how to classify a given chemical's risk and hazard level. This paper was designed to compare the classification results of chemicals by the MOL and the MOE and suggest a harmonization measure. Methods: After selecting 25 poisonous substances from among the organic solvents, pigments, and additives used in paint manufacturer, the GHS classification results by MOL and MOE were compared. Further the logic and classification of the GHS proposed by each Ministry was analyzed. Based on the derived results, a harmonization plan was proposed. Results: Based on the GHS classification of the poisonous substances, the concordance is 10.0-66.6 %, excluded flammable liquid. The GHS classifications differed based on the suggested building blocks, the sub-classification method used, the references(data sources), and subjective judgment of the experts from each Ministry. In order to pursue the harmonization plan, cooperation is demanded from the MOL and MOE.

Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector (한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석)

  • Chung, Yongjoo;Kim, Hugon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.

Evaluation of Peak Overpressure and Impulse Induced by Explosion (폭발에 따른 최대과압 및 충격량 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.28-34
    • /
    • 2016
  • Empirical model, phenomenological model, and CFD model have been used to evaluate the blast effects produced by explosion of explosives, flammable gas and liquid or dust. TNT equivalence method which is one of empirical models has been widely used as it is simple. In this study, new peak overpressure-scaled distance and scaled impulse-scaled distance equations are induced through fitting data from the curves given by TNT equivalence method. If the TNT equivalent mass is calculated, it is possible to estimate the peak overpressure and impulse using the regression equations. Differences of peak overpressure with yield factor which is a component of TNT equivalence method are found to be great in near-by distances from explosion source where the increase in overpressure is very steep, but the differences are getting smaller as the distances increase.